
Numerical Algorithms for Visual Computing II 2010/11
Example Solutions for Assignment 6

Problem 1 (Matrix Stability Infusion)

1. The matrix A of the arising matrix notation Un+1 = AUn takes the
following form, if the dirichlet boundary conditions are included by
including Un

0 = a0, Un+1
M = aM in the vector, i.e. U ∈ RM and A ∈

RM×M :

A :=


1
a 1− 2a a

. . . . . . . . .

a 1− 2a a
1


a :=

D∆t

∆x2

2. The Eigenvalues λk of A can be computed manually or with a computer
algebra system. An analytical computation yields:

λk = 1− 4
D∆t

∆x2
sin2

(
kπ

2M

)
If the magnitude of all Eigenvalues (i.e., the spectral radius) is bounded
by one, the scheme is stable. Since the squared sin-term is nonnegative,
it only has to be ensured that λk > −1 which yields the condition:

0 ≤ D∆t

∆x2
≤ 1

2

⇔ ∆t ≤ ∆x2

2D

1



Problem 2 + A7 P 1 (Oscillations: Reality or too much Glogg? +
Parabolic Stability Reloaded)

1. Validating the solution consists of checking all four conditions of the
IVP:

• ut = e−π
2tsinπx = −π2e−π

2tsinπx = ∂
∂x
πe−π

2tcosπx = ∂2

∂2x
e−π

2tsinπx =
uxx

• u(x, 0) = e0sinπx = sinπx

• u(0, t) = e−π
2tsin0 = 0

• u(1, t) = e−π
2tsinπ = 0

2. In the first iteration of the exercise, the scheme actually stayed stable
for time step values that exceeded the stability condition from problem
1 by far. This stems from the symmetry of the examined sin-function.
For all values from the exercise sheet, the results are of the following
form:
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If one however computes only half of the interval with fitting boundary
conditions, as in the second iteration of the exercise (parabolic stability
reloaded from assignment 7), oscillations as depicted below occur, if the
stability threshold for the time step size is surpassed.
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3. The Von Neumann stability analysis yields:

H(ω) = 1 +
D∆t

∆x2
[eiω∆x − 2 + e−iω∆x]

= 1 +
D∆t

∆x2
[2cos(ω∆x)− 2]

= 1− 2
D∆t

∆x2
[1− cos(ω∆x)]

In order to avoid the exponentional amplification of error terms in
subsequent iterations, the transfer function H must be bounded by 1.
This leads to the same stability constraints as the matrix analysis. The
form of the transfer function is also responsible for the oscillations that
occur when the stability threshold is exceeded.

Problem 3 (Thetas in the Christmas Stockings):

1. A θ-scheme consists of a weighted average of an implicit and an explicit
scheme:

un+1
j = unj +

D∆t

∆x2

(
θ(un+1

j+1 − 2un+1
j + un+1

j−1 ) + (1− θ)(unj+1 − 2unj + unj−1)
)

The case θ = 1
2

is called the Crank-Nicolson method. Its local trunca-
tion error is smaller in comparison to the implicit (θ = 1) or explicit
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(θ = 0) schemes. The space discretisations have a discretisation error
of order O(∆x2) since they represent a standard second order discreti-
sation that was already analysed in the lecture. This is the same in all
of the three methods.

However, Crank Nicholson approximates the time derivative at the
mesh point n + 1

2
due to the averaging of the implicit and explicit

terms. This in turn increases the order of the truncation error of the
forward difference in the time domain from O(t) to O(t2) as proven in
assignment 2 Ex. 3.

Hyperbolic Slide into 2011

1. As in problem 3, the local truncation error can be analyzed on the
basis of already proven properties of finite difference discretisations.
The local truncation error in ∆t stays the same in all of the schemes,
since all of them use a forward difference, i.e. we have a first order
approximation of the time derivatives. Forward or backward differences
in the spatial domain lead to a local truncation error of the form O(∆x)
while central differences yield a second order approximation in space.
Thus, in total, the following truncation errors emerge:

• backward difference in space: O(∆t+ ∆x)

• forward difference in space: O(∆t+ ∆x)

• central difference in space: O(∆t+ ∆x2)

2. The exercise is concluded with a Von Neumann analysis of the schemes:

• backward difference:

|H(ω)| = |(1 +
a∆t

∆x
) ∗ e0 − a∆t

∆x
e−iω∆x| ≤ 1

⇔ |1 +
a∆t

∆x
(1− e−iω∆x)| ≤ 1

worst case: 1 + 2
a∆t

∆x
≤ 1

Obviously, this cannot be fulfilled, since a > 0. Forward differ-
ences can be analsysed analogously.
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• central difference:

|H(ω)| = |1 ∗ e0 +
a∆t

∆x
(eiω∆x − e−iω∆x)| ≤ 1

⇔ |1− a∆t

∆x
(2cosω∆x)| ≤ 1

worst case: 1 +
2a∆t

∆x
≤ 1

⇔ 2a∆t

∆x
≤ 0
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