
Numerical Algorithms for Visual Computing II 2010/11
Example Solutions for Assignment 3

Problem 1 (Analysis in 1-D)

1. Let us first have a look at the function u′′(x) = 0. A proper primitive
(Stammfunktion) for this would be u′(x) = a for some constant c and
a primitive for this is u(x) = ax + b for another constant b. Now, we
need to consider the given boundaries.

As u(0) = k1, we can calculate u(0) = a · 0 + b
!

= k1. Therefore, we can
set b = k1. Furthermore we have to consider also u(1) = k2. Plugging

this into our primitive, we have u(1) = a · 1 + k1 = a + k1
!

= k2. By
setting a = k2 − k1 we have found a function that satisfies the given
constraints, i.e. the exact solution given by the BVP is

u(x) = (k2 − k1)x+ k1.

(a) Is a reasonable problem, as there exist a proper solution for this
problem with u(x) = x+ 2.

(b) Is a reasonable problem, as there exist a proper solution for this
problem with u(x) = 3x+ 1

(c) Problem is not reasonable. Considering the primitives for u′′(x) =
0, i.e. u′(x) = a and u(x) = ax + b, the sole boundary condition
u(1) = 4 results in a + b = 4. This however does not give any
information on the values a and b, i.e. the conditions on the
boundaries have not been given properly.

(d) Is a reasonable problem, as there exist a proper solution for this
problem with u(x) = x+ 3.

(e) Problem is not reasonable. The additional constraint u′′(1) = 1 is
in direct violation of the initial condition u′′(x) = 0.

1



Problem 2 (Explicit Coding)

1. For the explicit time marching algorithm, let us consider the already
discretized version of the 1-D Laplace equation ∆u = 0, i.e.

un+1
j − un

j

∆t
=
un

j+1 − 2un
j + un

j−1

∆x2

⇔ un+1
j =

(
1− 2

∆t

∆x2

)
un

j +
∆t

∆x2
un

j−1 +
∆t

∆x2
un

j+1

By considering our initial vector

u0 = (1, 3, 5, 7, 9, 11, 9.6, 8.2, 6.8, 5.4, 4)>,

we have the following results for τ = 0.25 after t = 0.25 (blue), t = 2.5
(green) and t = 5 (turquoise) iterations respectively:

u1 = (1, 3, 5, 7, 9, 10.15, 9.6, 8.2, 6.8, 5.4, 4)>,

u10 = (1, 2.9, 4.7, 6.3, 7.4, 8, 8, 7.5, 6.5, 5.3, 4)>

u20 = (1, 2.6, 4.1, 5.3, 6.2, 6.7, 6.8, 6.5, 5.9, 5, 4)>

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

11

One can see that the second order derivative scheme that we used is
only smoothing along the edges and it preserves structures that are
already linear.

2



2. The Jacobi iteration scheme can be derived quite easily from

0 =
un

j+1 − 2un
j + un

j−1

∆x2

⇔ un
j =

un
j−1 + un

j+1

∆x2

In general, this boils down to the averaging of both neighbouring pixels.
From this we can get the results

u1 = (1, 3, 5, 7, 9, 9.3, 9.6, 8.2, 6.8, 5.4, 4)>,

u10 = (1, 2.6, 4, 5.4, 6.1, 6.8, 6.7, 6.6, 5.8, 5, 4)>

u20 = (1, 2.1, 3.1, 4, 4.6, 5.1, 5.2, 5.2, 4.9, 4.5)>.

For the entire code implementation, see also the scilab file.

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

11

The graphs are the original function (black), after 1 (blue), 10 (green) and
20 (turquoise) iterations. It should be noted that the explicit time marching
algorithm converges for ∆t = 0.5 (and for ∆x = 1) to the Jacobi method in
this example.

3



Problem 3 (Direct Coding) The crucial part of this exercise is the deriva-
tion of the sought linear system of equations. For our given vector, we know
that the boundary values u0 and u10 should remain constant, and from our
observation of the first exercise, we would expect a linear function as a result.
From this we can conclude, that out of 11 possible equations, 2 are already
fixed. We only have to concentrate on the unknowns u1, . . . , u9. By use of
the equation

0 = uk
j+1 − 2uk

j + uk
j−1 j = 1, . . . , 9,

we have the sought system of equations already. We only need to take care
at the boundaries, i.e.

−2un
1 + un

2 = −un
0

−2un
9 + un

8 = −un
10,

which gives us the system

−2 1 0 0 0 0 0 0 0
1 −2 1 0 0 0 0 0 0
0 1 −2 1 0 0 0 0 0
0 0 1 −2 1 0 0 0 0
0 0 0 1 −2 1 0 0 0
0 0 0 0 1 −2 1 0 0
0 0 0 0 0 1 −2 1 0
0 0 0 0 0 0 1 −2 1
0 0 0 0 0 0 0 1 −2


u∞ =



−u0

0
0
0
0
0
0
0
−u10


This can be easily solved via the Thomas algorithm with the result

u∞ = (1, 1.3, 1.6, 1.9, 2.2, 2.5, 2.8, 3.1, 3.4, 3.7, 4)>,

which is the linear function we have been looking for. (see the scilab-file for
more details on the programming side).

4



Problem 4 (Implicit Coding) For this problem, we consider the implicit
Laplace discretisation

un+1
j − un

j

∆t
=

un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
.

This gives us after some computation

un
j =

(
1 + 2

∆t

∆x2

)
un+1

j − ∆t

∆x2
un+1

j−1 −
∆t

∆x2
un+1

j+1 .

Again, we have to take extra precaution at the boundaries, so our implicit
scheme for our problem is as follows:
I − ∆t

∆x2



−2 1 0 0 0 0 0 0 0
1 −2 1 0 0 0 0 0 0
0 1 −2 1 0 0 0 0 0
0 0 1 −2 1 0 0 0 0
0 0 0 1 −2 1 0 0 0
0 0 0 0 1 −2 1 0 0
0 0 0 0 0 1 −2 1 0
0 0 0 0 0 0 1 −2 1
0 0 0 0 0 0 0 1 −2




un+1 =



u1 + ∆t
∆x2u0

u2

u3

u4

u5

u6

u7

u8

u9 + ∆t
∆x2u10


As for the experiments, one can see that one can use time step sizes of
arbitrary length for the ∆t in the implicit scheme, whereas for the explicit
scheme, ∆t ≤ 0.5 in order to be stable, or else the scheme diverges.

Problem 5 (Jacobi Strikes Back)

1. Similar to the central difference approximation of the second derivative
uxx at point j∆x, we do the same thing for the backward difference
approximation

uxx(j∆x) ≈ ux(j∆x)− ux((j − 1)∆x)

∆x

The values ux(j∆x) and ux((j − 1)∆x) can be approximated by

uj − uj−1

∆x
and

uj−1 − uj−2

∆x

5



Then

uxx(j∆x) ≈ ux(j∆x)− ux((j − 1)∆x)

∆x

≈

uj − uj−1

∆x
− uj−1 − uj−2

∆x
∆x2

≈ uj − 2uj−1 + uj−2

∆x2

2. For the one-dimensional Laplace-equation

uxx = 0

one can take the finite difference approximation obtained from exercise
1a and solve for uj

un
j − 2un

j−1 + un
j−2

∆x2
= 0

From that we can obtain the iterative scheme

u
(n+1)
j = 2u

(n)
j−1 − u

(n)
j−2.

3. This iterative scheme is not really useful. The problem with this scheme
is that despite the fact that it describes a BVP, it only needs proper
boundary conditions on only one side (in our case it is on the right),
and on this side, one has also to consider a second boundary condition
as well, which may have not been given in advance. This is due to the
fact, that the evaluation for point uj depends solely on points from the
left hand side of the pixel. One can easily see that the mass transport
that is going on, is only shifting towards one direction. If one would
code such a scheme, one immediately has the problem that on the left
side there is no boundary condition necessary, and thus may result
in disfavourable behaviour, namely the process may become unstable.
Also, the derivative scheme approximates better a second derivative
approximation for uj−1 instead of uj

6


