
Numerical Algorithms for Visual Computing II

Michael Breuß

2

Contents

1 Introduction 7

2 Important Notions and Theoretical Background 9

3 Introduction to the Finite Difference Method 13
3.1 The Local Truncation Error . 14
3.2 Excursion on “Big-Oh” . 16

3.2.1 Properties of O(·) . 17

4 Introduction to Schemes for Elliptic and Parabolic PDEs 19

5 Elliptic PDEs: The Maximum Principle 25

6 Elliptic PDEs: Uniqueness 29

7 Isotropic Discretisations 35
7.1 Rotational invariance of the Laplace operator 35
7.2 Anatomy of a numerical discretisation 36
7.3 Isotropic second derivatives . 37
7.4 The isotropic numerical Laplace operator 39

8 Iterative Solvers for
Linear Systems: Introduction 41
8.1 Mathematical Preliminaries . 41
8.2 The Fix-Point-Theorem of Banach 44

9 Iterative Solvers for Linear Systems: Basic Theory 47

10 Iterative Solvers for Linear
Systems: Splitting-methods 53
10.1 The method of Jacobi . 55
10.2 The Gauß-Seidel-method . 55

3

10.3 Relaxation methods . 56

10.4 The SOR-scheme . 57

11 Iterative Solvers for Linear
Systems: Krylov-Subspace-Methods 61

11.1 The gradient descent scheme . 62

11.2 The method of conjugate directions 64

11.3 The CG-Method . 66

12 Preconditioning Linear Systems 69

12.1 Construction principle . 70

12.2 Construction of Splitting-based preconditioners 71

12.3 Incomplete approaches . 71

12.4 PCG - Preconditioned Conjugate Gradients 72

13 Diffusion Problems:
Numerical Stability and FED 73

13.1 Fast Explicit Diffusion (FED) . 75

14 Parabolic problems: Diffusion equations 77

14.1 Conservation of the average grey value 79

14.2 Summary of §14.1 . 83

15 Construction of numerical schemes for diffusion filters 85

15.1 Time integration . 85

15.2 Spatial integration . 88

16 Hyperbolic PDEs 93

16.1 Conservation form and consistency 93

16.2 Weak formulation . 94

16.3 Diffusion a.k.a. viscosity solutions 95

16.4 Theory of numerical methods . 96

17 High-Resolution Schemes for Hyperbolic PDEs 97

18 Upwinding 101

19 Stability 103

20 Fast Marching 105

20.1 The Algorithm . 107

4

21 Multigrid 109

5

6

Chapter 1

Introduction

Contents: Analysis and understanding of components of numerical solvers for par-
tial differential equations, discretisations for different types of problems.

What is a partial differential equation (PDE) ?
Typically, in an image we have 2 space dimensions, often denoted x and y. A
PDE is a differential equation, relating an unknown, sought function u(x, y) with
its derivatives, e.g.,

∂

∂x
u(x, y) +

∂

∂y
u(x, y) = 1

The partial derivatives work like usual derivatives; other variables than the indi-
cated one are treated like constants.

Example:

∂

∂x

[
x2 + y2

]
= 2x

Which types of PDEs do exist?

• Elliptic PDEs. Its solutions describe equilibrium states of a given quantity.
Thereby, an “equilibrium state”, or simply an equilibrium, denotes a stable
status which does not change in time.

• Parabolic PDEs. Describing time-dependent processes on the way to an
equilibrium.

• Hyperbolic PDEs. Denoting time-dependent transport of a given quantity
without an inherent tendency to an equilibrium as in the case of parabolic
PDEs.

7

What about other PDEs?
There exists an incredibly large zoo of variations which may all require special
numerical treatments.

• PDEs of mixed type

• single equations and systems of equations

• systems of PDEs of different types

• linear and non-linear ones

• PDEs of first, second, third or higher order

• etc...

What has this to do with Visual Computing?

• Elliptic PDEs arise, e.g., in tasks like image editing, image inpainting or
optic flow

• Parabolic PDEs are directly related to diffusion filters

• Hyperbolic PDEs arise in mathematical morphology, shape from shading,
and as a sub-model in many PDE-based filters

8

Chapter 2

Important Notions and
Theoretical Background

We now introduce the mandatory vovabulary. We begin by summarising some
important notions.

Let u ≡ u(x, y) (“≡” means “identical with”) be a smooth function; “smooth”
means, it is as many times continously differentiable (“stetig differenzierbar”) in
the variables x and y as required.

Then:

• ∂

∂x
u(x, y) = ux(x, y) ≡ ux

• ∂

∂y
u(x, y) = uy(x, y) ≡ uy

• ∂

∂x

(
∂

∂x
u(x, y)

)

=
∂2

∂x2
u(x, y) ≡ uxx

• ∇u =

(
ux

uy

)

, “∇” is called Nabla-Operator

• ∇ · ∇u =

∂

∂x
∂

∂y

 ·

(
ux

uy

)

=
∂

∂x
(ux) +

∂

∂y
(uy) = uxx + uyy = ∆u, “∆” is

the Laplace-Operator.

Definition 2.0.1 The highest occuring derivative in a PDE determines its order.

9

Examples

• ux + uy = 0 is a first-order PDE.

• ux + uyy = 0 is a second-order PDE.

• ∆u = 0 is a second-order PDE.

• uxxx + uy = 0 is a third-order PDE.

Definition 2.0.2 In a PDE relating a function u to its derivatives, we denote
sometimes

• u as the dependent variable (as it is not known and depends on x and y).

• x, y as the independent variables (as they do not depend on something else).

Definition 2.0.3 Non-linear PDEs in a dependent variable u arise by coefficients
of u and derivatives of u that depend on u itself.

Examples

• ∆u = 0 is a linear PDE

• u∆u = 0 is a non-linear PDE

• ∇ · (u2∇u) = 0 is a non-linear PDE

Remark.
In order to fill a notional gap between non-linear PDEs and this definition of
linearity, PDEs featuring space-variant coefficients are marked by the phrase “with
non-constant (or variable) coefficients”.

Strictly speaking, we have abused the term PDE up to now – for example, just
the equation

∆u = 0 (2.1)

is not a well-defined mathematical object by itself. Further conditions must be
specified in order to obtain a meaningful solution. For instance, in case of (2.1),
if u is a function defined over R2, any function

u(x, y) = c, c ∈ R

u(x, y) = ax + by, a, b ∈ R

u(x, y) = axy + by + c, a, b, c ∈ R

...

10

can be a solution. However, it would be convenient to single out one “interesting”
solution.
It turns out, that it makes sense to distinguish initial conditions (for time-dependent
problems where u depends also on a time t, u ≡ u(x, y, t)) and boundary conditions
(where the domain of a PDE ends).

We then distinguish the following cases.

Definition 2.0.4 Let u not only be a function of space, but also of time t, i.e. u ≡
u(x, y, t). Let the time-scale of interest begin with t = 0. Then the initial value problem (IVP)
is given by a combination

{

PDE for u(x, y, t)

u(x, y, 0) = ϕ(x, y)

with a suitable function ϕ.
In case of a finite domain of interest Ω, it often makes sense to specify boundary
conditions. We first define initial-boundary value problems (IBVPs) given by a
combination

PDE for u(x, y, t) with x, y ∈ Ω, t > 0

u(x, y, 0) = ϕ(x, y), x, y ∈ Ω

u(x, y, t) = η(x, y, t), x, y ∈ ∂Ω,

where ∂Ω is the boundary of Ω, and where Ω is an open domain, i.e. it does not
include its boundary.
If u does not depend on time, no initial condition for a time-evolution is needed
and we consider boundary value problems (BVPs) given by a combination

{

PDE for u(x, y), x, y ∈ Ω,

u(x, y) = η(x, y), x, y ∈ ∂Ω.

Remarks:

• Hyperbolic and Parabolic PDEs lead to IVPs or IBVPs.

• Elliptic PDEs occur in BVPs.

• We will loosely identify PDEs with corresponding problems and just speak
of the PDEs.

• One usually has to specify in which function space u is sought as this greatly
influences many issues. We will usually assume that our functions are in
L2, L1, H1 (≡ first derivatives are in L2) or in any other linear function space.

11

If a set-up is done properly, one can sometimes show rigorously, that one does not
waste time with a pathological problem:

Definition 2.0.5 We say that a given problem to a PDE is well-posed in the sense
of Hadamard, if

1. the problem has a solution,

2. this solution is unique,

3. the solution depends continuously on the data given in the problem.

12

Chapter 3

Introduction to the Finite
Difference Method

We begin by discretizing the spatial domain by placing a grid over it, starting in
1-D. We use the grid, or mesh, defined by

xj = j∆x, (3.1)

where ∆x is the so-called mesh width and xj are called nodes. Sketch:

mesh points

x-axis∆x ∆x ∆x ∆x ∆x ∆x ∆x

Notationally, we use approximations

Uj ≈ u(j∆x) (3.2)

The next step is to approximate derivatives on this grid. Since

u′(x) = lim
h→0

u(x + h)− u(x)

h

it seems that a reasonable approximation of u′(j∆x) could be

Uj+1 − Uj

∆x
. (3.3)

(3.3) is called forward difference. Other useful approximations of u′(j∆x) are:

Uj − Uj−1

∆x
backward difference (3.4)

Uj+1 − Uj−1

2∆x
central difference (3.5)

13

In a similar fashion we may approximate u′′ at j∆x by

Uj+1 − 2Uj + Uj−1

∆x2
(3.6)

In order to see that this is a reasonable approximation, consider that

u′((j + 1
2
)∆x)− u′((j − 1

2
)∆x)

∆x
(3.7)

approximates u′′(j∆x).

Sketch:

(j − 1)∆x j∆x (j + 1)∆x

(
j − 1

2

)
∆x

(
j + 1

2

)
∆x

The values u′((j ± 1
2
)∆x) can be approximated by

Uj+1 − Uj

∆x
and

Uj − Uj−1

∆x
, (3.8)

respectively. Then

u′′(j∆x) ≈ u′((j + 1
2
)∆x)− u′((j − 1

2
)∆x)

∆x

≈
Uj+1 − Uj

∆x
− Uj − Uj−1

∆x
∆x

=
Uj+1 − 2Uj + Uj−1

∆x2
(3.9)

compare (3.6).

3.1 The Local Truncation Error

As an example, let us consider the hyperbolic linear advection equation

∂

∂t
u(x, t) + a

∂

∂x
u(x, t) = 0 (3.10)

where a ∈ R is a parameter. As discretisation of ut + aux = 0 we use

Un+1
j+1 − Un

j

∆t
+ a

Un
j − Un

j−1

∆x
= 0 (3.11)

with the space-time mesh (j∆x, n∆t), j ∈ Z, n ∈ N.

14

The local truncation error is then defined as follows. We assume the smoothness
of an underlying solution u of the PDE ut + aux = 0. Associating then

x ≡ j∆x

x−∆x ≡ (j − 1)∆x

t ≡ n∆t

t + ∆t ≡ (n + 1)∆t

(3.12)

it will usually not hold exactly

u(x, t + ∆t)− u(x, t)

∆t
+ a

u(x, t)− u(x−∆x, t)

∆x
︸ ︷︷ ︸

=:A

= 0
︸︷︷︸

=:B

(3.13)

(Why not? Because (3.11) is obtained by approximating ut +aux = 0. In contrast,
u(x) and u(x±∆x) in (3.13) are supposed to be values of the exact solution u.)

The difference between the left and right hand side in (3.13) is called the
local truncation error:

L∆t,∆x(u(x, t)) (3.14)

:= A−B (3.15)

=
u(x, t + ∆t)− u(x, t)

∆t
+ a

u(x, t)− u(x−∆x, t)

∆x
− 0 (3.16)

Having a look at (3.13), it is clear that A − B may strongly depend on powers
of ∆t and ∆x. We now evaluate this dependence in more detail. To this end we
employ Taylor series expansions:

u(x, t + ∆t) = u(x, t) + [(t + ∆t)− t] · ut(x, t) +
[(t + ∆t)− t]2

2
· utt(x, t)

+
[(t + ∆t)− t]3

6
· uttt(x, t) + . . . (3.17)

u(x−∆x, t) = u(x, t) + [(x−∆x)− x] · ux(x, t) +
[(x−∆x)− x]2

2
· uxx(x)

+
[(x−∆x)− x]3

6
· uxxx(x, t) + . . . (3.18)

For some general function f , the general formula for Taylor series expansions is

f(x + h) =

p∑

k=0

hk

k!
f (k)(x) +O(hp+1). (3.19)

Thereby, O (“big-oh”) is the so-called Landau-symbol; we will elaborate on this
notion later.

15

Neglecting the arguments (x, t), we plug the expansions (3.17), (3.18) into (3.14):

L∆t,∆x(u)

=

[

u + ∆t · ut +
∆t2

2
utt +

∆t3

6
uttt +O(∆t4)

]

− u

∆t

+a

u−
[

u−∆x · ux +
∆x2

2
uxx +

∆x3

6
uxxx +O(∆x4)

]

∆x
− 0

= ut +
∆t

2
utt +

∆t2

6
uttt +O(∆t3) + aux +

a∆x

2
uxx +

a∆x2

6
uxxx +O(∆x2)

ut+aux=0
=

∆t

2
utt

︸ ︷︷ ︸

=O(∆t)

+
a∆x

2
uxx

︸ ︷︷ ︸

=O(∆x)

+O(∆t2) +O(∆x2)

(3.20) The

resulting assertion

L∆t,∆x(u) = O(∆t) +O(∆x) (3.21)

means: If, for a smooth solution u of ut + aux = 0 the mesh parameters ∆t and
∆x go to zero, then the error of the discretisation goes for ∆t→ 0, ∆x→ 0, with
the rates ∆t and ∆x also to zero, respectively. By (3.21), we say that the scheme
(3.11) is in time and space to the PDE ut + aux = 0.

Let us stress, that consistency is a local assertion, stated for the point (x, t).

One usually assumes a constant coupling ratio λ between ∆t and ∆x:

λ =
∆t

∆x
(3.22)

This implies λ ·∆x = ∆t, i.e. O(∆t) = O(∆x), so that we simply speak of first
order consistency.

3.2 Excursion on “Big-Oh”

The Landau symbol O(·) is defined as an equivalence class of functions.
For any given function ϕ : R→ R, we set

ϕ(h) = O(hp) ⇔ lim
h→0

ϕ(h)

hp
= C, (3.23)

16

C = constant, with (important!) 0 ≤ |C| <∞.

Let us note the difference of (3.23) to the use of O(·) in complexity theory. There,
one is typically interested in comparing the computational effort of algorithms
depending on a characteristic number n for large problems. ThereO(n),O(n2), . . . ,
tells us how an algorithm performs for large n.

In contrast, we are here interested in characteristic numbers of discretisations of
PDEs related to discretisation errors, i.e., we are interested in vanishing mesh
widths ∆x, ∆y, ∆t→ 0.

3.2.1 Properties of O(·)
Obviously, the definition (3.23) is not satisfied by a lot of functions ϕ. As O(hp)
can be understood as a set of functions, it seems to be appropriate to write

ϕ(h) ∈ O(hp). (3.24)

However, the notion (3.23) is commonly used in practice. Sticking for the moment
to the notation (3.24), we illustrate now further properties.

Examples

(i) Let ϕ1(h) = h. Then, with p = 1, we obtain

lim
h→0

h

h1
= 1,

and with 0 ≤ 1 (:= C) <∞ we have ϕ1(h) ∈ O(h).

(ii) Let ϕ2(h) = h2. Then, again with p = 1, we obtain

lim
h→0

h2

h1
= lim

h→0
h = 0,

and with 0 ≤ 0 (:= C) <∞ we also have ϕ2(h) ∈ O(h).

(iii) Let us consider again ϕ2(h), this time with p = 2:

lim
h→0

h2

h2
= 1,

and with 0 ≤ 1 (:= C) <∞ we also have ϕ2(h) ∈ O(h2).

17

Remark:
As obvious by (ii) and (iii), we have

O(h) ⊃ O(h2) ⊃ O(h3) ⊃ . . . (3.25)

(iv) Let ϕ3(h) = 0. For any p, we obtain

lim
h→0

0

hp
= 0,

and with 0 ≤ 0 (:= C) <∞, ϕ3(h) ∈ O(hp) for any p.

Thus, by (3.23) we have generated a complicated system of function sets!
Mathematically O(hp) can be understood, for any fixed p, as an ideal of a
function ring.

As observable by example (iv), the zero function is a member of every ideal
O(hp), and thus, e.g. the operation

1

O(hp)
(3.26)

is not allowed as it can mean division by zero.

18

Chapter 4

Introduction to Schemes for
Elliptic and Parabolic PDEs

In this paragraph, we consider the elliptic Laplace equation

∆u = uxx + uyy = 0 (4.1)

and the parabolic linear diffusion equation (or heat equation)

ut = ∆u (4.2)

over a finite domain Ω. A standard discretisation of (4.1) is

L (Ujk) :=
Uj+1,k − 2Ujk + Uj−1,k

∆x2
+

Uj,k+1 − 2Ujk + Uj,k−1

∆y2
= 0 (4.3)

The so-called stencil (“Stempel”) of the method indicates which values participate
at the point (j, k) in approximating ∆u:

Stencil centered at point indexed by j, k.

Choosing ∆x = ∆y (as usual in image processing) we can multiply (4.3) by ∆x2

to obtain

Uj+1,k − 2Ujk + Uj−1,k + Uj,k+1 − 2Ujk + Uj,k−1 = 0

19

⇔ Ujk =
1

4
(Uj+1,k + Uj−1,k + Uj,k+1 + Uj,k−1) (4.4)

We observe that Ujk is the arithmetic average of the neighboring values.

Theorem 4.0.1 By scheme (4.4), a maximum or minimum of the data can only
be attained at the boundary of Ω, or the discrete solution Ujk is constant.

Proof. Let a finite domain be given together with a local maximum at an inner
point (j, k). “Inner point” means that at j∆x, k∆y, there is not a boundary point
(where typically the value is somehow prescribed). Let a strict local maximum at
(j, k) be given by

Uj,k := C

Then formula (4.4) yields

C =
1

4
(Uj+1,k + Uj−1,k + Uj,k+1 + Uj,k−1)
︸ ︷︷ ︸

<4C

< C

Hence, there can be no strict local extremum at any inner point. The alternative
assertion of the theorem easily follows.

Teaser: Is this an undesired property of our method, or does this reflect a corre-
sponding property of the discretised PDE?

A simple yet popular way to solve (4.4) consists of starting with an arbitrary first

approximation U
(0)
jk and iteration:

U
(n+1)
jk =

1

4

[

U
(n)
j+1,k + U

(n)
j−1,k + U

(n)
j,k+1 + U

(n)
j,k−1

]

(4.5)

The method (4.5) is called Jacobi-iteration. It is easy to code (and parallelise), as
one only needs to go through the list of computational points (j, k) and compute
the new iteration values Un+1

jk out of the surrounding given data. Such a formula
is called explicit. However, the method (4.5) converges very slowly to the solution
of (4.4).

Having thus dealt with “inner points” of a computational domain, let us also
consider the boundary points in the set ∂Ω. As we deal with a BVP, we have
prescribed values Ulm for (l∆x, m∆y) ∈ ∂Ω. The boundary values come into play
if (l, m) for (l∆x, m∆y) ∈ ∂Ω is a neighbour of the iteration point (j, k), thus they
appearing on the right hand side of (4.5).

20

Let us now consider u ≡ u(x, y, t), and let us look at the parabolic linear diffusion
equation

ut = ∆u. (4.6)

Now, let Un
jk ≈ u(j∆x, k∆y, n∆t), where the upper index denotes the time level

(“Zeitschicht”). Then, let us approximate the time-derivative in (4.6) by a forward
difference:

ut(j∆x, k∆y, n∆t) ≈
Un+1

jk − Un
jk

∆t
(4.7)

Evaluating L (Ujk) at time level n, we obtain as an approximation

Un+1
jk = Un

jk + ∆t · L
(
Un

jk

)

⇔ Un+1
jk = Un

jk +
∆t

∆x2

(
Un

j+1,k − 2Un
jk + Un

j−1,k

)
(4.8)

+
∆t

∆y2

(
Un

j,k+1 − 2Un
jk + Un

j,k−1

)

Analogously to the explicitness of the Jacobi-iteration formula (4.5), the scheme
(4.8) is an explicit time-marching scheme.

If we would approximate ut by a backward difference, i.e.

ut(j∆x, k∆y, n∆t) ≈
Un

jk − Un−1
jk

∆t
, (4.9)

the resulting scheme would read

Un
jk = Un−1

jk + ∆t · L
(
Un

jk

)
(4.10)

Shifting indices n− 1→ n, n→ n + 1, we obtain

Un+1
jk = Un

jk + ∆t · L
(
Un+1

jk

)
(4.11)

Thus, a new value Un+1
jk depends not only on given values from time level n∆t,

but also on other unknowns Un+1
j±1,k, Un+1

j,k±1. The scheme (4.10) is an example of an
implicit time-marching scheme.

21

A generalisation of these two approaches is given via a parameter θ ∈ [0, 1], defining
the θ-scheme:

Un+1
jk = Un

jk + ∆t · θ · L
(
Un

jk

)
+ ∆t · (1− θ) · L

(
Un+1

jk

)
(4.12)

Accumulating the unknowns on the left hand side, one obtains a linear system of
equations:

Un+1
jk −∆t · (1− θ) · L

(
Un+1

jk

)
= Un

jk∆t · θ · L
(
Un

jk

)
(4.13)

There is one equation per discretisation point (j, k). This usually large system
needs to be solved in order to evaluate one time step.

However, let us turn our attention back to the explicit scheme (4.8), and let us
choose ∆x = ∆y and ∆t := ∆x2

4
:

Un+1
jk = Un

jk +

(
∆x2

4

)

∆x2

(
Un

j+1,k − 2Un
jk + Un

j−1,k

)

+

(
∆y2

4

)

∆y2

(
Un

j,k+1 − 2Un
jk + Un

j,k−1

)

= Un
jk +

1

4

(
Un

j+1,k + Un
j−1,k − 4Un

jk + Un
j,k+1 + Un

j,k−1

)

⇔ Un+1
jk =

1

4

(
Un

j+1,k + Un
j−1,k + Un

j,k+1 + Un
j,k−1

)
(4.14)

Thus, we can interprete the iteration indices (n), (n + 1) in the Jacobi-iteration
(4.5) as time levels n∆t, (n + 1)∆t. Then the Jacobi-iteration for solving the
Laplace equation is identical to a specific scheme for solving the linear diffusion
equation!

Technically, the solution of ∆u = 0 is obtained by running t→∞ in the equation
ut = ∆u, looking for so-called steady-states (“stationäre Zustände”) identified by
ut = 0. A pointwise validity of ut = 0 means, that the state u does not change
anymore when going forward in time.

We obtain the following relationships:

(i) The Laplace equation can be solved by introducing a time variable t as an
additional variable. The solution is retrieved as a steady-state solution of
the arising diffusion equation.

(ii) Steady-state solutions of the linear diffusion equation can be computed di-
rectly by solving the Laplace-equation.

The strategy introduced in point (i) is called method of artificial time. It is fre-
quently used for solving elliptic problems.

22

Having established connections, let us also stress
underlinedifferences between (4.5) and (4.14):

(i) Using (4.5) for solving an elliptic BVP, one may use arbitrary initial data

U
(0)
jk . Moreover, the iterates are meaningless, only the steady-state solution

is meaningful.

(ii) In contrast, (4.14) solves the linear diffusion equation. The initial data U0
jk

are usually not arbitrary, and the iterates Un
jk are of interest.

Conclusion. Parabolic and elliptic processes are conceptually very different, but
there exist important connections that are useful for computations.

23

24

Chapter 5

Elliptic PDEs: The Maximum
Principle

Motivation:

• Is there an important property of solutions of elliptic PDEs?

• Can we establish a connection between analytical and discrete world?

We consider the Laplace equation

∆u = 0, (5.1)

as well as its extension, the Poisson equation

∆u = f, (5.2)

where f is a given function.

Theorem 5.0.2 Let Ω be a connected, finite and open domain. Let u(x, y) solving
(5.1) in Ω be continuous in Ω = Ω∪∂Ω. Then the minimal and the maximal value
of u are situated on ∂Ω, otherwise u is constant.

Proof. We only consider the case of a local maximum, the case of a local minimum
follows analogously. For the proof, let ~x := (x, y). The maximum principle states,
that there exist points ~xm and ~xM on ∂Ω, such that

u(~xm) ≤ u(~x) ≤ u(~xM) (5.3)

holds for all ~x ∈ Ω. We prove the non-existence of inner maxima by means of a
“proof by contradiction”. Therefore, assume that there exists a maximum of u in
Ω. Then, it would hold there

uxx ≤ 0 as well as uyy ≤ 0

25

by the standard test on the second derivatives in calculus. Combined, this gives
us

uxx + uyy (= ∆u) ≤ 0.

At isolated maxima it holds uxx < 0 and uyy < 0.
This case directly yields a contradiction with (5.1), however, let us also consider

Sketch.

non-strict maxima:

Sketch.

Therefore, let ε > 0, and we define the auxiliary function

vε(~x) := u(~x) + ε‖~x‖22, ‖~x‖22 = x2 + y2. (5.4)

Let us briefly comment on vε(~x). By (5.4), it is clear that we always add a non-
negative contribution to u(~x). A non-strict maximum of u will be converted to a
monotone part of vε: Especially, we may choose ε small enough, so that u decays
faster than ε‖~x‖22 grows. This leads to the existence of a strict maximum of vε,
see sketch.

26

x

vε

u

At a non-strict maximum of u,

∆vε = ∆u + ∆(ε‖~x‖22)
= ∆u

︸︷︷︸

=0 at a non-strict
maximum

+ε∆(x2 + y2)

= ε

(
∂2

∂x2
+

∂2

∂y2

)

(x2 + y2)

= ε
∂2

∂x2
(x2 + y2) + ε

∂2

∂y2
(x2 + y2)

= ε · 2 + ε · 2 = 4ε > 0

This means ∆vε > 0 in Ω. But, as ∆vε ≤ 0 must hold at a maximum of vε in Ω,
vε cannot have a maximum in Ω. This is in contradiction to the construction of
vε, as discussed above. Thus, the assumption that u has a non-strict maximum in
Ω must be wrong.

It remains to show, that there exists a maximum of u on ∂Ω. However, this follows
immediately as u is assumed to be continuous, and thus it must have a maximum
in Ω = Ω ∪ ∂Ω: As Ω is excluded, ∂Ω remains for candidates.

Can we carry over this result to the discrete world?

Theorem 5.0.3 If

−Ui+1,j − 2Uij + Ui−1,j

∆x2
− Ui,j+1 − 2Uij + Ui,j−1

∆y2
= −L (Uij) ≤ 0 (5.5)

on Ω, then the maximum value of Uij is attained on the boundary points ∂Ω.

27

Remark:
We may relate the sign of L (Uij) to the sign of a given function f within the
Poisson equation.

Proof. L (Uij) ≤ 0 can be rewritten as

Uij

∆x2
+

Uij

∆y2
≤ 1

2

(
Ui+1,j + Ui−1,j

∆x2
+

Ui,j+1 + Ui,j−1

∆y2

)

(5.6)

Now, let Uij be a local maximum, i.e.,

Uij ≥ {Ui+1,j, Ui−1,j, Ui,j+1, Ui,j−1} (5.7)

Using (5.7) to estimate the right hand side of (5.6) gives:

1

2

(
Ui+1,j + Ui−1,j

∆x2
+

Ui,j+1 + Ui,j−1

∆y2

)

≤ 1

2

(
2Uij

∆x2
+

2Uij

∆y2

)

=

(
1

∆x2
+

1

∆y2

)

Uij ,

(5.8)

so that

Uij

∆x2
+

Uij

∆y2

︸ ︷︷ ︸

left hand side of (5.6)

(5.8)

≤
(

1

∆x2
+

1

∆y2

)

Uij (5.9)

Since the left and right hand side of (5.9) are the same, all inequalities are equal-
ities. Now, let us think of (5.7) as a “3-out-of-4” procedure. First, assume
Uij ≥ {Ui−1,j , Ui,j+1, Ui,j−1}. Then analogously to (5.8) we can compute using
“=” instead of “≤” (as this is already established):

1

∆x2
Uij =

1

2

(
1

∆x2
Ui+1,j +

1

∆x2
Uij

)

, (5.10)

so that Ui+1,j = Uij. In the same manner, we can apply this procedure at the other
values in (5.7), and thus

Uij = {Ui+1,j , Ui−1,j, Ui,j+1, Ui,j−1}. (5.11)

Hence, if Uij is a local maximum in Ω, then the discrete solution Uij is constant.
Consequently, it cannot have a local maximum in Ω.

Analogously, one can prove a discrete minimum principle follows analogously for
L (Uij) ≥ 0.

Conclusion:
Continuous-scale and discrete world are connected w.r.t. the maximum principle.
The discrete result can be viewed as the translation of the analytical result to the
discrete world. However, the techniques to establish the corresponding results are
very different and do not correspond.

28

Chapter 6

Elliptic PDEs: Uniqueness

Motivation:

• Can we expect a unique solution to solve for numerically?

• Setting up an iterative method, do there exist several solutions depending
on the initial iteration state?

By the maximum principle established in Section §5 the uniqueness of a solution
follows. To see this, we define the BVPs:

{

∆u = f in Ω

u = ϕ on ∂Ω
(6.1)

and
{

∆v = f in Ω

v = ϕ on ∂Ω
(6.2)

We want to show u ≡ v in Ω. Therefore, we set w := u− v and compute

∆w = ∆(u− v) = ∆u−∆v = f − f = 0

Thus, ∆w = 0 in Ω. On the boundary ∂Ω, we have w = u− v = ϕ− ϕ = 0. Let
~x = (x, y). By the maximum principle, there exist points ~xm and ~xM on ∂Ω with

0 = w(~xm) ≤ w(~x) ≤ w(~xM) = 0 for all x ∈ Ω

Thus w ≡ 0 and u ≡ v.

29

We see, that the analytical uniqueness result is easily established. Can we translate
it to the discrete world?

To make this issue concrete, we consider a “test-grid” on [0, 1]× [0, 1]:

and approximate (6.1) by use of our standard approximation:

Ui+1,j − 2Uij + Ui−1,j

∆x2
+

Ui,j+1 − 2Uij + Ui,j−1

∆y2
= fij (6.3a)

for i = 1, . . . , Mx − 1, j = 1, . . . , My − 1,

U0,j = ϕ0,j , j = 1, . . . , My − 1, (6.3b)

UMx,j = ϕMx,j, j = 1, . . . , My − 1, (6.3c)

Ui,0 = ϕi,0, i = 1, . . . , Mx − 1, (6.3d)

Ui,My
= ϕi,My

, i = 1, . . . , Mx − 1. (6.3e)

We ask for the related issues of existence and uniqueness of a solution of (6.3a),
as the solvability of (6.3a) is of computational importance.

We discuss two methods that can be used to ensure that (6.3a) has a unique
solution. Observe that (6.3a) is a linear system of equations that can be written
as

Ax = g, A ∈ R
L×L, x, g ∈ R

L (6.4)

If we could show, that A is invertible, then the existence and uniqueness of
the solution of the discrete problem follows. If we order the unknowns Uij in

30

lexicographical order (as a remark, often this ordering begins top left and follows
the ordering of words as read in books; we start here bottom left)

and put them into a vector

(
U11, . . . , UMx−1,1, U12, . . . , UMx−1,2, . . . , UMx−1,My−1

)⊤
(6.5)

the matrix A from (6.4) can be written in block form:

A =

B
1

∆y2
I 0

1

∆y2
I B

. . .

. . .
. . .

1

∆y2
I

0
1

∆y2
I B

(6.6)

with (My − 1)× (My − 1) blocks, where B is the (Mx − 1)× (Mx − 1) matrix

B =

−2

(
1

∆x2
+

1

∆y2

)
1

∆x2
0

1

∆x2

. . .
. . .

1

∆x2

0
1

∆x2
−2

(
1

∆x2
+

1

∆y2

)

, (6.7)

and I is the (Mx − 1)× (Mx − 1) identity matrix.

31

Remark: Any zeros along the super- and subdiagonals in A are due to the boundary
conditions at x = 0 and x = 1.

The first method to discuss (6.4) involves the assumption that A is positive defi-
nite.

Definition 6.0.1 A matrix A is positive definite if x⊤Ax > 0 for all vectors x 6= 0.

Remark:
An important special assertion valid for symmetric matrices A is: A is positive
definite if and only if all eigenvalues of A are larger than zero.

One can easily show:

Corollary 6.0.1 If A is positive definite, then A is invertible.

It is not difficult to see that A from (6.6), (6.7) is symmetric, however, to prove
that A is positive definite involves more mathematics and is much more difficult
(but feasible).

The second method relies on the diagonal dominance of the matrix.

Definition 6.0.2 A = (akl) is diagonally dominant respectively strictly diagonally
dominant, if

|akk| ≥
L∑

l=1
l 6=k

|akl| =: pk for all k = 1, . . . , L, (6.8)

respectively

|akk| >
L∑

l=1
l 6=k

|akl| =: pk for all k = 1, . . . , L (6.9)

holds.

We then obtain the following important result:

Corollary 6.0.2 If A is strictly diagonally dominant, then A is invertible.

The bad news is, that we cannot use Corollary 6.0.2 on our model problem. In
the matrix A, though many of the rows are strictly diagonally dominant, a large
number (rows associated with the interior points) are only diagonally dominant.

32

Let us make the following definition.

Definition 6.0.3 The L× L-matrix A is reducible, if either

1. L = 1 and A = 0, or

2. L ≥ 2, and there exists a permutation matrix P and some integer r, 1 ≤ r ≤
L, such that

P⊤AP =

(
B C
0 D

)

,

where B is r × r. D is (L − r) × (L − r), C is r × (L − r), and 0 is the
(L− r)× r zero matrix. The matrix A is irreducible, if it is not reducible.

Obviously, the above information is not palatable. A more convenient characteri-
sation in terms of systems Ax = b is: A matrix A is irreducible if a change in any
of the components of b will cause a change in the solution x.

Remark:
To obtain a reducible matrix in a finite difference setting means to solve a problem
that can be seperated into two (or more) problems.

The assertion that we want is as follows:

Corollary 6.0.3 If A is an irreducible diagonally dominant matrix for which
|akk| > pk holds for at least one k, then A is invertible.

Result:
The matrix A in (6.7) is invertible.

Conclusion:
It can be difficult to translate uniqueness results from the continuous-scale world
to the discrete world. Also, in the discrete setting, the recommended techniques
strongly rely on the chosen discretisation method.

33

34

Chapter 7

Isotropic Discretisations

We now adress the rotational invariance of PDEs and their numerical discretisa-
tions. The often encountered word isotropy has the following greek origins:

iso ≡ in the same way,

trop ≡ rotated or directed

The contrary of isotropy is anisotropy, referring to a “structure” showing a prefered
direction.

We consider the Laplace equation

∆u = 0, (7.1)

the solution of which are called harmonic functions. We will rely on the following
assertion (without proof).

Theorem 7.0.4 Let u be a harmonic function in Ω ⊂ R2. Then u possesses in Ω
partial derivatives of arbitrary order.

The point is, we can rely on the techinque of Taylor series expansions of u without
need to consider their existence.

7.1 Rotational invariance of the Laplace opera-

tor

In the plane, a rotation by an angle α is described by

x′ = x · cos α + y · sin α

y′ = −x · sin α + y · cos α.
(7.2)

35

By use of the chain rule, we compute

ux(x
′, y′) =

∂u

∂x′
· ∂x′

∂x
+

∂u

∂y′
· ∂y′

∂y

ux(x
′, y′) = ux′ · cos α− uy′ · sin α,

uy(x
′, y′) = ux′ · sin α + uy′ · cos α,

uxx(x
′, y′) = (ux′ · cos α− uy′ · sin α)x′ · cos α− (ux′ · cos α− uy′ · sin α)y′ · sin α

uyy(x
′, y′) = (ux′ · sin α + uy′ · cos α)x′ · sin α + (ux′ · sin α + uy′ · cos α)y′ · cos α

Adding the last two terms together yields

uxx + uyy = [ux′x′ cos2 α− uy′x′ sin α cos α− ux′y′ cos α sin α + uy′y′ sin2 α]

+ [ux′x′ sin2 α + uy′x′ cos α sin α + ux′y′ sin α cos α + uy′y′ cos2 α]

= (ux′x′ + uy′y′)(cos2 α + sin2 α
︸ ︷︷ ︸

=1

) = ux′x′ + uy′y′

Thus, the Laplace operator does not prefer any one direction over the others: An
isotropic situation is modeled.

Is it possible to identify isotropy in numerical schemes?

7.2 Anatomy of a numerical discretisation

For discretising ∆u = uxx + uyy = 0, let us consider

uxx ≈
Ui+1,j − 2Uij + Ui−1,j

h2
, (7.3)

uyy ≈
Ui,j+1 − 2Uij + Ui,j−1

h2
, (7.4)

where h = ∆x = ∆y. Summarising (7.3),(7.4) we obtain

1

h2
(Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − 4Uij) = 0 (7.5)

We now employ the Taylor series expansions to assess the local truncation error
scheme (7.5), writing u ≡ Uij .

Ui+1,j = u + hux +
h2

2
uxx +

h3

6
uxxx +

h4

24
uxxxx +

h5

120
uxxxxx +O(h6)(7.6a)

Ui−1,j = u− hux +
h2

2
uxx −

h3

6
uxxx +

h4

24
uxxxx −

h5

120
uxxxxx +O(h6)(7.6b)

Ui,j+1 = u + huy +
h2

2
uyy +

h3

6
uyyy +

h4

24
uyyyy +

h5

120
uyyyyy +O(h6) (7.6c)

Ui,j−1 = u− huy +
h2

2
uyy −

h3

6
uyyy +

h4

24
uyyyy −

h5

120
uyyyyy +O(h6) (7.6d)

36

Plugging (7.6) into (7.5) yields

∆u +
h2

12
(uxxxx + uyyyy) +O(h4) = 0. (7.7)

The leading order error term in (7.7), i.e.,

h2

12
(uxxxx + uyyyy), (7.8)

has a directional bias! This can be seen as follows. We know from §7.1, that the
functions do not feature a directional preference. Setting

Ψ := ∆u, (7.9)

Ψ is a harmonic function without directional bias. As it is in C∞ by Theorem
7.0.4, we can apply the Laplace operator at it yielding

∆Ψ = ∆(∆u)

=

(
∂2

∂x2
+

∂2

∂y2

)(
∂2

∂x2
+

∂2

∂y2

)

u

=
∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+

∂4u

∂y4

6= uxxxx + uyyyy.

Thus, due to the missing mixed derivatives 2 ∂4u
∂x2∂y2 the term (7.8) incorporates a

directional preference.

7.3 Isotropic second derivatives

The idea behind isotropic numerical discretisations is to remove a directional bias
in the largest part of the numerical error. The conventional central difference
(“C”) discretisation of uxx is given by

(uxxC
)ij =

1

h2
(Ui+1,j − 2Uij + Ui−1,j), (7.10)

which can be modeled, to leading order in the error term, as

(uxxC
)ij ≡

(

1 +
h2

12

∂2

∂x2

)

uxx. (7.11)

37

In contrast, by the methodology of §7.2 the isotropic discretisation of uxx, (uxxI
)ij,

is obtained from

(uxxI
)ij ≡

(

1 +
h2

12
∆

)

uxx. (7.12)

Taking into account the factorisation

(

1 +
h2

12

∂2

∂y2

)(

1 +
h2

12

∂2

∂x2

)

= 1 +
h2

12

(
∂2

∂x2
+

∂2

∂y2

)

+
h4

144

∂4

∂x2∂y2

= 1 +
h2

12
∆ +

h4

144

∂4

∂x2∂y2
,

(7.13)

we observe by (7.11) and (7.12) that with an error O(h4) we can write

(uxxI
)ij ≡

(

1 +
h2

12

∂2

∂y2

)

(uxxC
)ij , (7.14)

which gives the discretisation

(uxxI
)ij = (uxxC

)ij +
h2

12

∂2

∂y2
(uxxC

)ij

=
1

h2
(Ui+1,j − 2Uij + Ui−1,j)

+
h2

12

[
1

h2
((uxxC

)i,j+1 − 2(uxxC
)ij + (uxxC

)i,j−1)

]

=
1

h2
(Ui+1,j − 2Uij + Ui−1,j)

+
1

12

[
1

h2
(Ui+1,j+1 − 2Ui,j+1 + Ui−1,j+1)−

2

h2
(Ui+1,j − 2Uij + Ui−1,j)

+
1

h2
(Ui+1,j−1 − 2Ui,j−1 + Ui−1,j−1)

]

=
1

h2

[
10

12
(Ui+1,j − 2Uij + Ui−1,j) +

1

12
(Ui+1,j+1 − 2Ui,j+1 + Ui−1,j+1)

+
1

12
(Ui+1,j−1 − 2Ui,j−1 + Ui−1,j−1)

]

(7.15)

38

7.4 The isotropic numerical Laplace operator

The isotropic numerical Laplace operator is obtained from the isotropic discreti-
sations of uxx and uyy:

∆Iu = (uxxI
) + (uyyI

). (7.16)

Such isotropic discretisations usually incorporate more computational nodes than
simple schemes. For example, our “simple” scheme from (7.5) has a 5-point stencil:

In contrast, the isotropic discretisation (7.16) has a 9-point stencil:

Intuitively, this is clear, since an isotropic discretisation should incorporate points
from all directions.

39

40

Chapter 8

Iterative Solvers for
Linear Systems: Introduction

Motivation:
Many models lead to linear systems of equations that need to be solved, e.g. optic
flow, or PDE-based compression.

Typical properties of arising systems Ax = b are:

(a) A is inexact. Often, it is given by a discretisation of a PDE.

(b) b is inexact. Often, it is directly given by noisy image data.

(c) A is often sparse, i.e. only a small number of entries relative to the matrix
dimension are non-zero. Usually, only these values are stored.

Consequences:

• We aim only for an approximate solution, as an exact solution will not be of
better quality.

• We aim only for a method working with little more than the stored entries.

It turns out that iterative methods are good for doing the job.

8.1 Mathematical Preliminaries

We can only compile here the most important assertions we use. We will rely on
the notion of the spectral radius and consider complex numbers.

Definition 8.1.1 Let B ∈ Cn×n be a matrix.

41

(i) A complex number λ ∈ C is called eigenvalue of B, if there exists a vector
x 6= 0, x ∈ Cn, with Bx = λx.

(ii) This vector x is called eigenvector corresponding to λ.

(iii) The set σ(B) = {λ : λ is eigenvalue of B} is called spectrum of B.

(iv) The number ρ(B) = max{|λ| : λ ∈ σ(B)} is called spectral radius of B.

We also rely on vector norms

Definition 8.1.2 Let X be the Cn, i.e. a complex linear space. A mapping ‖.‖ :
X → R with the properties, for x ∈ Cn,

(N1) ‖x‖ ≥ 0 (positivity)

(N2) ‖x‖ = 0⇔ x = 0 (definiteness)

(N3) ‖α · x‖ = |α| · ‖x‖ ∀x ∈ X, ∀α ∈ C (homogenity)

(N4) ‖x + y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ X (triangle inequality)

is called a norm on X.

Examples are

‖x‖1 :=

n∑

i=1

|xi|, (8.1)

‖x‖2 :=

(
n∑

i=1

|xi|2
) 1

2

, (8.2)

‖x‖∞ := max
i=1,...,n

|xi|. (8.3)

We also require a convergence notion.

Definition 8.1.3 A sequence {xn}n∈N of elements in Cn is convergent to the
limit element x ∈ Cn, if there exists for any ε > 0 a natural number N = N(ε)
with

‖xn − x‖ < ε ∀n ≥ N. (8.4)

A sequence, which is not convergent, is divergent.

We now compile some important assertions on norms, convergent sequences and
their relationship.

42

(i) If {xn} is a convergent sequence, then the limit element is unique.

(ii) Two norms ‖.‖a and ‖.‖b are equivalent, if the following assertion holds: Any
sequence converges with respect to the norm ‖.‖a, if and only if it converges
with respect to ‖.‖b.

(iii) For one and the same sequence {xn}, the limit elements determined with
respect to equivalent norms are identical.

(iv) On a finite-dimensional space like Cn or Rn, all norms are equivalent.

We now generalise the vector norms to matrix norms by using the concept of

Definition 8.1.4 If B ∈ Cn×n and ‖.‖a : Cn → R is a norm, then

‖B‖a := sup
‖x‖a=1

‖Bx‖a (8.5)

is the matrix norm induced by the vector norm ‖.‖a.

Examples are

‖B‖1 = max
k=1,...,n

n∑

i=1

|bik| (8.6)

‖B‖∞ = max
i=1,...,n

n∑

k=1

|bik| (8.7)

‖B‖2 ≤
(

n∑

i,k=1

|bik|2
)1

2

= ‖B‖F . (8.8)

The norm ‖.‖F is called Frobenius-norm, and it is not an induced norm.

One can prove the following assertion:

Corollary 8.1.1 Let B ∈ Cn×n and B∗ be its adjoint matrix (transpose with com-
plex conjugated entries), then

‖B‖2 =
√

ρ(B∗B). (8.9)

Remark:
For the special case of real, symmetric matrices, we obtain by (8.9) the relation
‖B‖2 = ρ(B).

43

One of the central assertions we finally need is:

Corollary 8.1.2 For all matrices B and all ε > 0, there exists a norm ‖.‖ with

ρ(B) ≤ ‖B‖ ≤ ρ(B) + ε. (8.10)

Remark:
In general, convergence assertions not relying on a specific norm can be directly
transfered to the spectral radius.

8.2 The Fix-Point-Theorem of Banach

Many iterative schemes for solving Ax = b can be written in the fashion

xn+1 = F (xn), n = 0, 1, 2, (8.11)

Two important notions are given as follows

Definition 8.2.1 An element x in D ⊂ X is called fixpoint of the operator F :
D ⊂ X → X, if

F (x) = x. (8.12)

Definition 8.2.2 An operator F : D ⊂ X → X is called contracting (on D), if a
number q, 0 ≤ q < 1, exists with

‖F (x)− F (y)‖ ≤ q‖x− y‖ ∀x, y ∈ D. (8.13)

The number q is the contraction number of F .

One can prove:

Corollary 8.2.1 Contracting operators do have at most one fix point.

Proof. Let x, y ∈ D be two fix points of F , then

‖x− y‖ = ‖F (x)− F (y)‖ ≤ q‖x− y‖,

so that by

‖x− y‖ ≤ q‖x− y‖
⇔ (1− q)

︸ ︷︷ ︸

≥0

‖x− y‖
︸ ︷︷ ︸

≥0

≤ 0

the relation ‖x− y‖ = 0 follows. By (N2), see Def. 8.1.2, holds x = y.

44

This culminates to

Theorem 8.2.1 (Theorem of Banach) Let F : D → D be a contracting oper-
ator, then there exists exactly one fix point x ∈ D of F , and the sequence defined
by xn+1 = F (xn), n = 0, 1, 2, . . ., converges for all initial vectors x0 ∈ D to x.
Moreover, we obtain the following error estimates:

‖xn − x‖ ≤ qn

1− q
‖x1 − x0‖ (a priori),

‖xn − x‖ ≤ q

1− q
‖xn − xn−1‖ (a posteriori),

where q is the contraction number of F .

Outlook. We will need the important theoretical results from §8 to establish
convergence for iterative solvers, and to quantify how efficient they are.

45

46

Chapter 9

Iterative Solvers for Linear
Systems: Basic Theory

We consider again the linear system of equations

Ax = b (9.1)

where

• b ∈ Cn is a given right hand side (RHS),

• A ∈ Cn×n is regular.

Iterative methods successively compute approximations xm of the exact solution
A−1b via

xm+1 = φ(xm, b) for m = 0, 1, . . . , (9.2)

for a given initial vector x0 ∈ Cn.

We deal with so-called linear schemes.

Definition 9.0.3 An iterative scheme given by the mapping

φ : C
n ×C

n → C
n (9.3)

is called linear, if matrices M, N ∈ Cn×n exist, so that φ can be written as

φ(x, b) = Mx + Nb. (9.4)

The matrix M is called the iteration matrix of φ.

Remark: Note, that M and N are uniquely determined by φ.

47

We aim for constructing a sequence xm approaching A−1b. Thus, we define:

Definition 9.0.4 A vector x̃ ∈ Cn is the fixed point of the iterative method φ
corresponding to b ∈ Cn, if

x̃ = φ(x̃, b). (9.5)

We now come to two very important notions.

Definition 9.0.5 (i) An iterative scheme φ is consistent to A if, for all b ∈ Cn,
the solution A−1b is a fixed point of φ corresponding to b.

(ii) An iterative scheme φ is convergent, if, for all b ∈ Cn and all initial vectors
x0 ∈ Cn, a limit element

x̂ = lim
m→∞

xm = lim
m→∞

φ(xm−1, b) (9.6)

exists.

Remarks:

(i) By definition, the limit element x̂ shall arise independently of the choice of
x0.

(ii) Consistency is a necessary property of φ, as otherwise there is no link between
φ and Ax = b.

(iii) Convergence means that a fixed point exists. Without consistency, this could
be anywhere, having nothing to do with A−1b.

Can we quantify conditions showing consistency and convergence?

Theorem 9.0.2 A linear iterative scheme is consistent to A, if and only if

M = I −NA (9.7)

holds, where I is the identity Matrix.

Proof. Let x∗ = A−1b. We show both implication directions of the theorem, thus
proving the equivalence assertion (“if and only if”).

“⇒” Assumption: Let φ be consistent to A. Then

x∗ = φ(x∗, b) = Mx∗ + Nb = Mx∗ + NAx∗, (9.8)

and thus

Mx∗ = x∗ −NAx∗ = (I −NA)x∗, (9.9)

so that M = I −NA.

48

“⇐” Assumption: M = I −NA.
Then, by I = M + NA

x∗ = Ix∗ = Mx∗ + N Ax∗
︸︷︷︸

=b

= Mx∗ + Nb = φ(x∗, b). (9.10)

By φ(x∗, b) = x∗ follows that x∗ is a fixed point. As we did not impose any property
on b, φ(x∗, b) = x∗ holds for any b, and thus the consistency of φ to A follows.

Remark: Does consistency suffice as a condition to define a method φ that makes
sense?
No, choose: M = I, N = 0, then we obtain φ(x, b) = x. Then, for x∗ = A−1b we
have that x∗ is a fixed point, but this also holds for any other x.

Theorem 9.0.3 A linear iterative scheme φ is convergent, if and only if the spec-
tral radius of the iteration matrix M satisfies the condition

ρ(M) < 1. (9.11)

Proof. “⇒” Assumption: Let φ be convergent.
Let λ be the eigenvalue of M with |λ| = ρ(M), and let x ∈ Cn \ {0} be the corre-
sponding eigenvector. As we aim to show here that (9.11) is a necessary condition,
we may specify b as = 0 ∈ C

n. Then by x0 = x we get

xm = φ(xm−1, b) = Mxm−1 = M(Mxm−2) = (9.12)

Finally, we obtain

xm = Mmx0 = λmx0. (9.13)

For |λ| > 1 we should obtain by ‖xm‖ = |λ|m · ‖x0‖ the divergence of the sequence
{xm}m∈N.
For |λ| = 1, M is nothing else but a rotation of the eigenvector. Convergence of
{xm}m∈N could be achieved for the trivial rotation, i.e., λ = 1. In the latter case
xm = x0 holds for all initial vectors x0 for all m ∈ N, so that

x̂ = lim
m→∞

xm = x0

is a limit vector depending on x0. Thus, the iterative scheme is not convergent
because of this dependence.

In summary, |λ| = ρ(M) < 1 is a necessary condition.

49

“⇐” Assumption: ρ(M) < 1 (sufficient condition). By Definition and Corollary
??, all norms are equivalent on Cn. Thus, the convergence of φ can be proven in
any norm. Let

ε :=
1

2
(1− ρ(M)) > 0, (9.14)

then there exists by Corollary 8.1.2 a norm on C
n×n so, that

q := ‖M‖ ≤ ρ(M) + ε. (9.15)

For any given b ∈ C
n we define

F : C
n → C

n (9.16)

x
F7→ F (x) = Mx + Nb

Herewith we obtain

‖F (x)− F (y)‖ = ‖Mx−My‖ ≤ ‖M‖ · ‖x− y‖ = q‖x− y‖. (9.17)

Let us briefly comment on the step

‖Mx−My‖ ≤ ‖M‖ · ‖x− y‖. (9.18)

We compute in detail

‖Mx−My‖ = ‖M(x− y)‖

=
1

‖x− y‖
︸ ︷︷ ︸

∈R+

‖M(x− y)‖ · ‖x− y‖

= ‖M
(

x− y

‖x− y‖

)

︸ ︷︷ ︸

=:z∈Cn, ‖z‖=1

‖ · ‖x− y‖

≤ sup
z∈Cn, ‖z‖=1

‖Mz‖ · ‖x− y‖

= ‖M‖ · ‖x− y‖.
Let us stress, that we obtain from (9.15) and (9.17)

‖F (x)− F (y)‖ ≤ q‖x− y‖, 0 < q < 1. (9.19)

Applying the fixed-point-theorem of Banach, see Theorem 8.2.1, we get the con-
vergence of the sequence xm+1 = F (xm) for any x0 ∈ Cn, and for the unique limit
element x̂ holds:

x̂ = lim
m→∞

xm+1 = lim
m→∞

F (xm)
(9.16)
= lim

m→∞
φ(xm, b). (9.20)

The developments combine to

50

Theorem 9.0.4 Let φ be convergent iterative scheme also consistent to A. Then,
the limit element x∗ of the sequence

xm = φ(xm−1, b), m = 1, 2, . . . (9.21)

solves the system Ax = b for any x0 ∈ Cn.

51

52

Chapter 10

Iterative Solvers for Linear
Systems: Splitting-methods

The basis of splitting-methods for solving Ax = b is the splitting

A = B + (A− B), (10.1)

so that Ax = b is equivalent to

[B + (A−B)]x = b

⇔ Bx = (B − A)x + b

⇔ x = B−1(B − A)x + B−1b (10.2)

The idea is to choose B ∈ Cn×n

• as close as possible to A, but

• easily invertible.

By (10.2), it is easy to formulate splitting-methods in terms of a linear iterative
scheme,

xm+1 = φ(xm, b) = B−1(B − A)
︸ ︷︷ ︸

=:M

xm + B−1
︸︷︷︸

=:N

b, (10.3)

where φ is automatically consistent to A. In case A is positive definite and symmet-
ric (PDS), symmetric splitting-methods preserve and make use of this structure
by using a B that is also PDS.
To assess the efficiency of splitting-methods, we will make use of the following
(general!) assertion for the iteration matrix M .

53

Theorem 10.0.5 Let ρ(M) < 1. Then there exists a norm so, that q := ‖M‖ < 1
holds. For any given ε > 0, it follows that

‖xm − A−1b‖ ≤ ε (10.4)

for all m ∈ N with

m ≥
ln

(
ε(1− q)

‖x1 − x0‖

)

ln q
(10.5)

Proof:
By ρ(M) < 1 and Corollary 8.1.2, there exists for all ε > 0 with 0 < ε < 1− ρ(M)
a norm yielding

ρ(M) ≤ ‖M‖
︸︷︷︸

:=q

≤ ρ(M) + ε < 1 (10.6)

Using the a-priori-estimate of the fixed-point-theorem of Banach, see Theorem
8.2.1, we obtain directly

‖xm − A−1b‖ ≤ qm

1− q
‖x1 − x0‖. (10.7)

Setting concretely

ε :=
qm

1− q
‖x1 − x0‖, (10.8)

we obtain (10.4) via

ε
1− q

‖x1 − x0‖
=

qm

1− q
‖x1 − x0‖ ·

1− q

‖x1 − x0‖
= qm (10.9)

and using the rule ln qm = m · ln q, we get (10.5)

ln

(
ε(1− q)

‖x1 − x0‖

)

ln q
= m (≤ m + 1 ≤ m + 2 ≤ . . .). (10.10)

Remark:
By Theorem 10.0.5, it becomes clear that the aim is to choose B in a way that
ρ(M)≪ 1.

54

10.1 The method of Jacobi

The simplest choice for an easily invertible approximation of A is to take just its
diagonal:

D := B := diag(a11, a22, . . . , ann). (10.11)

In this case,

D−1 = B−1 = diag

(
1

a11

,
1

a22

, . . . ,
1

ann

)

. (10.12)

Obviously, we need non-zero diagonal entries. The resulting Jacobi-scheme is

xm+1 = D−1(D −A)xm + D−1b, m = 0, 1, 2, . . . , (10.13)

reading componentwise for xm+1 = (xm+1,1, xm+1,2, . . . , xm+1,n)⊤ as:

xm+1,i =
1

aii

bi −
n∑

j=1
j 6=i

aijxm,j

(10.14)

for i = 1, . . . , n. As observable by (10.14), for the computation of xm+1 we only
employ xm. Consequently, the Jacobi-scheme features

(i) independency of the numbering of vector entries xm+1,i, and

(ii) a high potential for parallel implementation.

Remark: One can prove convergence to A−1b of the iterates xm+1 of the Jacobi
method under the uniqueness assumptions on A elaborated on in §6.

10.2 The Gauß-Seidel-method

We now split A as

A = L + D + U, (10.15)

where D is as in 10.11, and

L = (lij) with lij =

{

aij , i > j,

0, else,
(10.16)

U = (uij) with uij

{

aij , i < j,

0, else,
(10.17)

55

i.e., L and U are the lower and upper triangular components of A, respectively.
Then

Ax = b ⇔ (D + L)x = −Ux + b (10.18)

and

x = −(D + L)−1U
︸ ︷︷ ︸

=:MGS

x + (D + L)−1

︸ ︷︷ ︸

=:NGS

b (10.19)

With these obvious definitions for φ, we now aim for a similar formula as (10.14).
To this end, we look at the i-th row of the system (10.18):

i∑

j=1

aijxm+1,j = −
n∑

j=i+1

aijxm,j + bi. (10.20)

Computing the entries of xm+1 in the order 1, 2, 3, . . . , up to n we assume that at
the index i the values

xm+1,j for j = 1, . . . , i− 1, (10.21)

are already known. Plugging these into the left hand side of (10.20) gives

xm+1,i =
1

aii

(

bi −
i−1∑

j=1

aijxm+1,j −
n∑

j=i+1

aijxm,j

)

(10.22)

for i = 1, . . . , n.

Remarks:

• The method relies on the ordering.

• Also here, we need aii 6= 0.

• One can prove convergence of {xn} to A−1b under moderate assumptions.

10.3 Relaxation methods

We now rewrite the general formula

xm+1 = B−1(B −A)xm + B−1b (10.23)

56

as

xm+1 = xm + B−1(b− Axm)
︸ ︷︷ ︸

=:rm

. (10.24)

Thus, we may interprete xm+1 as a correction of xm making use of the vector um.
The idea is to get a better performance by weighting the vector rm, stretching it
by some factor ω < 1 (“underrelaxation”) or ω > 1 (“overrelaxation”), yielding:

xm+1 = xm + ωB−1(b− Axm), ω ∈ R
+. (10.25)

Sketch:

b

xm+1

xm

ω · rm

Rewriting again (10.25) as

xm+1 = (I − ωB−1A)
︸ ︷︷ ︸

=:M(ω)

xm + ωB−1
︸ ︷︷ ︸

N(ω)

b, (10.26)

an optimal choice for ω is obviously

ω = min
α∈R+

ρ(M(α)). (10.27)

10.4 The SOR-scheme

We now consider the overrelaxation of the Gauß-Seidel-method (“successive-overrelaxation
scheme”). Using

1

aii

(

−
n∑

j=i+1

aijxm,j

)

= xm,i +
1

aii

(

−
n∑

j=i

aijxm,j

)

in (10.22), we rewrite the latter formula in the style of (10.25):

xm+1,i = xm,i +
ω

aii

(

bi −
i−1∑

j=1

aijxm+1,j −
n∑

j=i

aijxm,j

)

, (10.28)

57

obtaining

xm+1,i = (1− ω)xm,i +
ω

aii

(

bi −
i−1∑

j=1

aijxm+1,j −
n∑

j=i+1

aijxm,j

)

. (10.29)

In terms of matrices, (10.29) reads as

(I + ωD−1L)xm+1 = [(1− ω)I − ωD−1U]xm + ωD−1b, (10.30)

which is identical to

D−1(D + ωL)xm+1 = D−1[(1− ω)D − ωU]xm + ωD−1b. (10.31)

We obtain by (10.31) the SOR-scheme as

xm+1 = (D + ωL)−1[(1− ω)D − ωU]
︸ ︷︷ ︸

=:MGS(ω)

xm + ω(D + ωL)−1

︸ ︷︷ ︸

=:NGS(ω)

b. (10.32)

We consider two key assertions

Theorem 10.4.1 For A ∈ Cn×n with aii 6= 0, it holds:

ρ(MGS(ω)) ≥ |ω − 1| (10.33)

Proof:
Let λ1, . . . , λn be the eigenvalues of MGS(ω), then

n∏

i=1

λi = det MGS(ω)

(10.32)
= det((D + ωL

︸ ︷︷ ︸

lower triangular

)−1) · det((1− ω)D − ωU
︸ ︷︷ ︸

upper triangular

)

using det(AB) = det A · det B for any A, B

= det(D−1) · det((1− ω)D) as L, U do not contribute

= (det D)−1 · (1− ω)n · det D by rules for determinants

= (1− ω)n.

Thus,

ρ(MGS(ω)) = max
i
|λi| ≥ |1− ω|, (10.34)

as otherwise
n∏

i=1

λi < (1− ω)n

must hold.
The most important consequence of Theorem 10.4.1 is

58

Corollary 10.4.1 A necessary condition for the convergence of the SOR method
is ω ∈ (0, 2).

In order to assess the convergence of SOR, one needs to consider the Jacobi-method
with

MJ := D−1(D − A) (10.35)

Let ρ := ρ(MJ) < 1. Then, under some mild assumptions, one can show that
ρ(MGS) is minimal for

ωoptimal =
2

1 +
√

1− p2
, (10.36)

and then

ρ(MGS(ωoptimal)) = ωoptimal − 1 =
1−

√

1− p2

1 +
√

1− p2
(10.37)

follows. Let us briefly consider the main step of the proof to give a flavour.
One can relate the eigenvalues µ ∈ C\{0} of MGS and λ ∈ R of MJ by the formula

λ =
µ + ω − 1

ωµ
1

2

(10.38)

(there exists a formula for
√

µ for µ complex). From (10.38) we derive the condition

(µ + ω − 1)2 − ω2µλ2 = 0 (10.39)

By the quadratic equation (10.39) we get, e.g. by the p-q-formula two eigenvalues
µ± as

µ± = µ±(ω, λ) =
1

2
λ2ω2 − (ω − 1)± λω

√

1

4
λ2ω2 − (ω − 1)

︸ ︷︷ ︸

=:ĝ

. (10.40)

Obviously, µ± gets minimal in the general case if there is no contribution by ĝ.
Thus, we look for its zeroes:

g(ω, λ) :=
1

4
λ2ω2 − (ω − 1)

!
= 0. (10.41)

These are given by

ω± = w±(λ) =
2

1±
√

1− λ2
, (10.42)

and by ω ∈ (0, 2) we can neglect the “−”-case, yielding ωoptimal from (10.36).

59

60

Chapter 11

Iterative Solvers for Linear
Systems:
Krylov-Subspace-Methods

We consider again

Ax = b, A ∈ R
n×n, b ∈ R

n. (11.1)

The idea we will follow is to search for an approximate solution of (11.1) in a
suitable low-dimensional subspace of R

n. To this end, let Km and Lm be m-
dimensional subspaces of Rn.

Definition 11.0.1 A projection method computes approximate solutions xm ∈
x0 + Km obeying and making the use of orthogonality condition

(b− Axm) ⊥ Lm, (11.2)

where x0 ∈ Rn. Orthogonality is defined via the Euclidean scalar product

a ⊥ b := (a, b)2 = 0 ⇔ a⊤b = 0 ⇔ a1b1 + . . . + anbn = 0. (11.3)

In case of Km = Lm, (11.2) says that the residual vector rm = b−Axm is orthogonal
to Km:
Sketch:

61

×

×

×

×

b

x0

approximation x1

r1

exact solution

x0 + K1

In this case, we have an orthogonal projection method. For Km 6= Lm, the projec-
tion method is called skewed.

Let us emphasize differences between splitting schemes and projection methods.

Splitting methods Projection methods
Computed xm ∈ Rn xm ∈ x0 + Km,
iterates are Km ⊂ Rn, dim Km = m ≤ n
Scheme xm = Mxm−1 + Nb b− Axm ⊥ Lm,
defined by Lm ⊂ Rn, dim Lm = m ≤ n

We now get more specific.

Definition 11.0.2 A Krylov-Subspace-Method is a projection method where Km

is chosen as

Km = Km(A, r0) = span{r0, Ar0, . . . , A
m−1r0} (11.4)

with r0 = Ax0 − b.

The meaning of the formula (11.4) is nothing else but an algorithm to increase
successively the dimension of Km.
Krylov-Subspace-Methods are often derived by reformulating (11.1) as a minimi-
sation task. The two most popular schemes in this class are the CG-scheme for
symmetric positive definite (SPD) matrices of Hestenes and Stiefel (1952) and the
GMRES-scheme for general regular matrices of Saad and Schultz (1986). We will
go for CG.

11.1 The gradient descent scheme

At the basis of all derivations is the function

F : R
n → R

x 7→ 1

2
(Ax, x)2 − (b, x)2 (11.5)

62

together with the following observation:

Corollary 11.1.1 If A is an SPD matrix, then the minimum x∗ of F from (11.5)
is attained if and only if Ax∗ = b.

We now aim to minimise F successively, starting from some point x ∈ Rn and
minimising along directions p ∈ R

n. For these x, p ∈ R
n we define the function

fx,p : R → R

λ 7→ fx,p(λ) := F (x + λp). (11.6)

Corollary 11.1.2 The global minimum of fx,p, i.e. the minimum of F , starting
in x and searching along x + λp, is given by

λopt =
(r, p)2

(Ap, p)2
, (11.7)

where r := b− Ax.

Remark: The proof relies on elementary 1-D calculus; f ′
x,p(λopt) = 0 and f ′′

x,p(λ) > 0
for all λ. Given thus a sequence of search directions {pm}, we can formulate a basic
algorithm.

Algorithm 10-1:

(1) Choose x0 ∈ Rn.

(2) For m = 0, 1, . . ., do

• rm = b− Axm

• λm =
(rm, pm)2

(Apm, pm)2

• xm+1 = xm + λmpm

We now need an algorithm determining {pm}, demanding ‖pm‖2 = 1.

The gradient descent method is defined via the “downhill-choice”: By

∇F (x) =
1

2
(A + A⊤)x− b

A symmetric
= Ax− b = −r, (11.8)

the direction of steepest descent −∇F (x) at x is

p :=

r

‖r‖2
for r 6= 0,

0 for r = 0,
(11.9)

defining {pm} in an obvious way. For later use, let us stress that the residual
vectors define the search directions.

63

11.2 The method of conjugate directions

One can generalise the procedure by taking into account several search directions
within the construction of the algorithm.

Definition 11.2.1 For F as in (11.5), x ∈ Rn is

(a) optimal w.r.t. the direction p ∈ Rn, if

F (x) ≤ F (x + λp) ∀λ ∈ R, (11.10)

(b) optimal w.r.t. the subspace U ⊂ Rn, if

F (x) ≤ F (x + ξ) ∀ξ ∈ U, (11.11)

As in Corollary 11.1.2, one can prove

Corollary 11.2.1 For F as in (11.5), x ∈ Rn is optimal w.r.t. U ⊂ Rn, if

r = b− Ax ⊥ U (11.12)

holds.

For defining a constructive procedure, it is important to be sure about the dimen-
sion of U . We now explore a means to ensure that a collection of search directions
p0, . . . , pm−1 spans a m-dimensional subspace of Rn, so that

dim Um = m for Um = span{p0, . . . , pm−1}. (11.13)

Definition 11.2.2 The vectors p0, . . . , pm−1 ∈ Rn are pairwise conjugate, or A-
orthogonal, if

(pi, pj)A := (Api, pj)2 = 0 ∀i, j ∈ {0, . . . , m− 1} and i 6= j. (11.14)

The key to success is:

Corollary 11.2.2 For A a SPD matrix and p0, . . . , pm−1 ∈ Rn \ {0} pairwise
A-orthogonal, then

dim(span{p0, . . . , pm−1}) = m. (11.15)

64

Proof:

Let
m−1∑

j=0

αjpj = ~0 with the coefficients αj ∈ R. If the pj ’s are linearly independent,

αj = 0 must follow, which we want to show. We compute for any pi:

0 = (~0, Api)2 =

(
m−1∑

j=0

αjpj, Api

)

2

=

m−1∑

j=0

αj(pj , Api)2

A-Orthogonality
= αi (pi, Api)2

︸ ︷︷ ︸

>0 as A is SPD

.

From 0 = αi(pi, Api)2, αi = 0 must follow.
Thus, let

• p0, . . . , pm−1 ∈ R
n \ {0} be pairwise conjugate search directions,

• xm be optimal w.r.t. Um = span{p0, . . . , pm−1}. Then we obtain the opti-
mality of

xm+1 = xm + λpm (11.16)

w.r.t. Um+1, if for j = 0, . . . , m, we have:

0 = (b− Axm+1, pj)2 = (b− Axm, pj)2
︸ ︷︷ ︸

=0 for j 6=m by (11.12)

+ λ(Apm, pj)2
︸ ︷︷ ︸

=0 for j 6=m by (11.14)

. (11.17)

For the only interesting choice j = m we obtain

λ =
(rm, pm)2

(Apm, pm)2
. (11.18)

This yields the following algorithm, where {pm} still needs to be determined.

Algorithm 10-2

(a) Choose x0 ∈ Rn

(b) r0 := b− Ax0

(c) For m = 0, . . . , n− 1

65

• λm =
(rm, pm)2

(Apm, pm)2

• xm+1 = xm + λpm

• rm+1 = rm − λmApm.

11.3 The CG-Method

The CG-Method of Hestenes and Stiefel combines the gradient descent method
with the method of conjugate directions. To this end we use as in (11.9) the
residual vectors as search directions:

p0 = r0, pm = rm +

m−1∑

j=0

αjpj. (11.19)

For αj = 0 we retrieve the gradient descent scheme. For more general αj , the
search directions p0, . . . , pm−1 are taken into account now, leaving by the αj ’s m
degrees of freedom for ensuring A-orthogonality. The latter condition implies

0 = (Apm, pi)2
(11.19)

= (Arm, pi)2 +

m−1∑

j=0

αj(Apj , pi)2 (11.20)

for i = 0, . . . , m− 1. By (Apj , pi)2 = 0 for i, j ∈ {0, . . . , m− 1} and i 6= j follows

αi =
(Arm, pi)2

(Api, pi)2

. (11.21)

In principle we are done, however, in practice the scheme derived up to now is
inefficient as for computing pm via (11.19) the storage of all the search directions
p0, . . . , pm−1 is required. This can be circumvented by using the simplified formula

pm = rm +
(rm, rm)2

(rm−1, rm−1)2
pm−1, (11.22)

which can be derived from (11.19)-(11.21). The final result is

Algorithm 10-3

(a) Choose x0 ∈ Rn.

(b) p0 := r0 := b−Ax0, α0 := ‖r0‖22 = (r0, r0)2

(c) For m = 0, . . . , n− 1 do

66

• If αm 6= 0 proceed, else STOP

• vm := Apm, λm :=
αm

(vm, pm)2

• xm+1 := xm + λmpm

• rm+1 := rm − λmvm

• αm+1 := ‖rm+1‖22
• pm+1 := rm+1 +

αm+1

αm

pm

Remarks:

• One can prove, that if the stopping criterion is fulfilled, the solution of (11.1)
is found.

• The CG-scheme is an orthogonal Krylov-Subspace-Method.

67

68

Chapter 12

Preconditioning Linear Systems

Motivation:

• Preconditioning makes iterative solvers for linear systems Ax = b efficient.
This can make a difference towards real-world applications in image process-
ing.

• Before looking for algorithms, we discuss a number indicating the efficiency
of iterative solvers, the so-called condition number.

Definition 12.0.1 If A ∈ C
n×n is regular, then

conda(A) := ‖A‖a · ‖A−1‖a (12.1)

where

‖A‖a := sup
‖x‖a=1

‖Ax‖a (12.2)

is the matrix norm induced by the vector norm ‖.‖a.

One can show

Lemma 12.0.1 For A regular it holds

cond(A) ≥ cond(I) = 1. (12.3)

In a practical setting, the norm of the residual vector rm = b−Axm usually serves
as a measure for the quality of xm, since em = A−1b − xm is not available. One
reason for this is, that rm = 0 means that xm = x, where Ax = b. However, only
for a small condition number cond(A) the norm or rm is really meaningful. This
is shown by

69

Theorem 12.0.1 Given is an iterative scheme for solving Ax = b. Consider the
exact error vector eK = A−1b−xk and the residual vector rk = b−Axk of the k-th
iteration step, then

1

cond(A)
· ‖rk‖
‖r0‖

≤ ‖ek‖
‖e0‖

≤ cond(A)
‖rk‖
‖r0‖

≤ cond(A)2‖ek‖
‖e0‖

(12.4)

We especially see by (12.4) that the rate of decrease in the true error,
‖ek‖
‖e0‖

, is

bounded by cond(A)
‖rk‖
‖r0‖

. Thus, for a large number cond(A), even a small number

‖rk‖ does not show that xk is a good approximate of x since cond(A) · ‖rk‖
‖r0‖

can

be considerably large.

Let us also consider the influence of errors in given data that are usually collected
via b.

Theorem 12.0.2 Let x solve Ax = b, and let x + δx solve A(x + δx) = b + δb,
then

‖δx‖
‖x‖ ≤ cond(A)

‖δb‖
‖b‖ . (12.5)

Similarly as by Theorem 12.0.1, we observe by (12.5) that a small change δb may
infer a large variation δx if cond(A) ≫ 1. Summarising Theorem 12.0.1 and
Theorem 12.0.2, it makes sense to transform Ax = b into an equivalent system
Ãx = b̃ with cond(Ã) ≪ cond(A), and to solve Ãx = b̃ iteratively instead of
Ax = b.

12.1 Construction principle

We begin with

Definition 12.1.1 Let PL and PR be regular. Then

PLAPRxP = PLb (12.6a)

x = PRxP (12.6b)

is the preconditioned system corresponding to Ax = b. If PL 6= I, then PL is called
left preconditioner, and the system is preconditioned from the left. Analogously,
the notion of a right preconditioning is coined. If both PL, PR 6= I, then we have a
twosided preconditioning.
The conflicting goals in defining PL, PR are:

70

(a) PLAPR shall approximate I as good as possible, cond(PLAPR)≪ cond(A).

(b) PL, PR shall be easy to compute.

(c) PL, PR shall use a small amount of disk space.

Remark: The twosided preconditioning with P⊤
L = PR is useful in the context of

SPD matrices, as PLAP⊤
L is again SPD.

12.2 Construction of Splitting-based precondi-

tioners

Recalling the splitting methods from §10, they were based on rewriting A as

A = B + (A− B) (12.7)

The idea in that was that B shall be an easy to invert matrix close to A, so that
the iteration matrix

M = B−1(B −A) (12.8)

has a small spectral radius. This idea is close to the concept of preconditioners.
Thus, it seems a good idea to use N = B−1 as PL. We conclude these thoughts
via

Definition 12.2.1 Let xj+1 = Mxj + Nb a splitting method for solving Ax = b
with regular N . Then P := N is the preconditioner associated with the splitting
method.

Knowing some matrices N from before, we summarise some preconditioners.

Splitting method Associated preconditioner P
Jacobi D−1

Gauß-Seidel (GS) (D + L)−1

SOR ω(D + ωL)−1

12.3 Incomplete approaches

Another approach we just briefly sketch here is to rely on factorisations such as
A = LU , A = LL⊤, or A = QR. In the context of sparse systems, only the
structure of entries in A is used, so that the factorisations will be incomplete, e.g.
A = L̂Û + F . However, using e.g. P = (L̂Û)−1 is an efficient preconditioner.
There are many other choices, reflecting a variety of approaches.

71

12.4 PCG - Preconditioned Conjugate Gradients

As we have in image processing a number of tasks where SPD matrices arise, e.g.
Deconvolution, we discuss the preconditioning of CG in some detail.

Starting with Ax = b, we use a regular matrix PL yielding

AP xP = bP (12.9)

with

AP = PLAP⊤
L , xP = P−⊤

L x, bP = PLb, (12.10)

where P−⊤
L := (P−1

L)⊤. The matrix PL is for a SPD matrix A often given by a
symmetric ansatz, e.g. a symmetric splitting method, or an incomplete Cholesky
factorisation, compare Table ??.
After a few simple manipulations of the straightforward modification of CG, the
result is, for P := P⊤

L PL and a prescribed ε≪ 1:

Algorithm 17-1 (PCG)

1) Choose x0 ∈ Rn

2) r0 := b− Ax0, p̂0 := Pr0, αP
0 := (r0, p̂0)2

3) For m = 0, . . . , n− 1

• If ‖rm‖2 ≤ ε then STOP

• ELSE:

(i) v̂m := Ap̂m, λP
m :=

αP
m

(v̂m, p̂m)2

(ii) xm+1 := xm + λP
mp̂m

(iii) rm+1 := rm − λP
mv̂m

(iv) zm+1 := Prm+1, αP
m+1 := (rm+1, zm+1)2

(v) p̂m+1 := zm+1 +
αP

m+1

αP
m

p̂m

Remark: For the implementation one heavily relies on the fact that matrices
like D, D + R, D + L, are diagonal or triangular, so that they can easily be
inverted by forward or backward elimination, respectively.

72

Chapter 13

Diffusion Problems:
Numerical Stability and FED

We consider as a model problem the discretisation

Un+1
j = Un

j +
D∆t

∆x2

[
Un

j+1 − 2Un
j + Un

j−1

]
(13.1)

of the linear diffusion PDE

ut = D · uxx , D > 0 (13.2)

Since linear diffusion as by (13.2) models a smoothing process equivalent to con-
volution with a Gaussian, we can state that by (13.1)

• no oscillations shall be induced as these are contradictive to smoothing

• there should be a discrete minimum-maximum principle

Let us investigate these points, starting by rearranging terms of (13.1):

Un+1
j =

D∆t

∆x2
Un

j+1 +

[

1− 2
D∆t

∆x2

]

Un
j +

D∆t

∆x2
Un

j−1 (13.3)

A necessary and sufficient condition for realising a discrete minimum-maximum
principle is that it holds locally in all points. The corresponding property is that
Un+1

j+1 shall be in the convex hull of Un
j+1, Un

j and Un
j−1:

Un+1
j :=

1∑

k=−1

αkU
n
j+k , αk ≥ 0 ,

1∑

k=−1

αk = 1 (13.4)

73

While the αk as by (13.3) sum up to 1, the condition αk ≥ 0 needs to be fulfilled
especially for α0:

1− 2
D∆t

∆x2

!
≥ 0 (13.5)

As this invokes the condition

∆t ≤ ∆x2

2D
(13.6)

one speaks of conditional stability.

A second approach is to understand the method (13.1) as a linear filter, and
to investigate the amplification of input signals. To this end, we look at the
corresponding transfer function

H (ω) = 1 +
D∆t

∆x2

[
eiω∆x − 2 + e−iω∆x

]
(13.7)

where we introduced waves in accordance to Un
j+k → eiω(k∆x). Rearranging terms

using Euler’s identity eiϕ = cos ϕ + i sin ϕ gives

H (ω) = 1 +
D∆t

∆x2
[2 cos ω∆x− 2] = 1− 2

D∆t

∆x2
[1− cos ω∆x]

︸ ︷︷ ︸

=:A

(13.8)

Any input signal will not be amplified if H (ω) ≤ 1. Since cos ω∆x ∈ [−1, 1] for
any ω, it holds 1− cos ω∆x ≥ 0.
The “worst case” with the largest contribution from the term A in (13.8) will be
for cos ω∆x = −1, i.e. for ω∆x = π + 2kπ, k ∈ Z, or by restriction to [0, 2π[:

ω∆x = π (13.9)

In order to ensure H (ω) ≥ −1, we obtain the condition

2
D∆t

∆x2
[1− cos ω∆x]

!
≤ 2 (13.10)

which means for ω∆x = π

2
D∆t

∆x2
[1− (−1)]

!
≤ 2 ⇔ 1− 2

D∆t

∆x2

!
≥ 0 (13.11)

This means of stability investigation is called von Neumann stability analysis.

Let us also note that (13.9) tells us 2ω∆x = 2π, where ∆x is the sampling rate
of our signals. This means, the “worst case” above corresponds to an input wave
with the highest possible frequency that can be sampled by our mesh.

74

13.1 Fast Explicit Diffusion (FED)

The motivation of FED can be formulated as follows:

• Linear difusion is equivalent to convolution with a Gaussian.

• Gaussians can be approximated by repeated application of a box filter. To
this end, only few of such iterations are needed.

• The point will be that the box filter tells us what to do with linear diffusion.
The resulting procedure can be generalised to other settings.

Let us denote a discrete box filter of length ((2n + 1) ∆x, n ∈ N, by

(
B∆x

2n+1(f)
)

j
:=

1

2n + 1

n∑

k=−n

fj+k (13.12)

The following theorem states an important connection between box filtering and
explicit diffusion schemes with variable time step sizes.

Theorem 13.1.1 The box filter B∆x
2n+1 is equivalent to a cycle with n explicit linear

diffusion steps

B∆x
2n+1 =

n−1∏

i=0

(I + ∆ti∆d) , ∆dU :=
Un

j+1 − 2Un
j + Un

j−1

∆x2 (13.13)

with the varying time step sizes

∆ti =
∆x2

4 cos2

(

π
2i + 1

4n + 2

) (13.14)

and corresponding stopping time

Tn :=

n−1∑

i=0

∆ti =
∆x2

3

(
n + 1

2

)

(13.15)

Remarks:

• The points 1/ (∆ti) are the zeroes of corresponding Chebychev polynomials
over [0, 1].

• The ∆ti partially violate stability conditions.

75

While the equivalence to box filtering means that the complete process should be
stable when observed just at Tn, the instable steps used during the process may
deteriorate the result severely in practice. To cure this, it turns out that a specific
re-ordering of the time step sizes ∆ti (i.e. of the indices i) suffices:

Definition 13.1.1 Let Sn be the set of n time steps ∆ti. The Leja orderng of the
∆ti is defined via

∆t0 := max
∆ti∈Sn

|∆ti| (13.16)

j−1∏

k=0

|∆tj −∆tk|
︸ ︷︷ ︸

“multiplicative distance”

:= max
j≤l≤n

j−1∏

k=0

|∆tl −∆tk| (13.17)

The ordered set is denoted SL
n .

Thus, in the Leja ordering the multiplicative distances are sucessively optimised.

The complete algorithm summarises as follows:

1) Choose stopping time and determine the set Sn of time step sizes.

2) Compute Leja ordering SL
n of Sn.

3) Compute convolution with box filter by explicit diffusion using SL
n .

4) Repeat the process corresponding to successive application of box filters.

Let us emphasize, that it is not the point that explicit diffusion steps are compu-
tationally much cheaper than a pointwise convolution with B∆x

2n+1; the latter can
be implemented very efficiently. Rather than that, the linear diffusion steps can
easily be generalised to nonlinear diffusion.

76

Chapter 14

Parabolic problems: Diffusion
equations

Motivation: Get an idea of diffusion filtering.

The key to understand diffusion equations is the Theorem of Gauß:
∫

σ

∇(∇u)~x =

∫

∂σ

∇u · ~ns, (14.1)

where ∇(∇u) = ∆u, ~n is the outer unit normal vector of σ, and ds is a “surface
element” on ∂σ.
As we usually deal with pixels in images, we have for any pixel σ:

Sketch:

• ∂σ = l1 ∪ l2 ∪ l3 ∪ l4

• ‖ ~n1‖2 = . . . = ‖ ~n4‖2 = 1

• ~n1 = (1, 0)⊤, ~n2 = (0, 1)⊤,
~n3 = (−1, 0)⊤, ~n4 = (0,−1)⊤

77

Let us now look back at a complete linear diffusion equation:

ut = ∆u. (14.2)

Integrating (14.2) over a pixel σi and dividing by its area we denote as |σi| yields:

1

|σi|

∫

σi

ut(~x, t)~x =
1

|σi|

∫

σi

∇(∇u)~x (14.3)

Assuming smoothness of u, we draw
∂

∂t
out of the left integal, and use (14.1) on

the right hand side:

∂

∂t

[
1

|σi|

∫

σi

u(~x, t)~x

]

︸ ︷︷ ︸

average grey value over pixelσi

=
1

|σi|

∫

∂σi

∇u · ~ns. (14.4)

Let us put (14.4) into words: The temporal change of the average grey value of a
pixel σi is determined by the flux given by ∇u at its boundary.

Sketch of 1-D situation:

left: ∇u · ~n ≡ u′
︸︷︷︸

>0

·(−1) < 0

right: ∇u · ~n ≡ u′
︸︷︷︸

<0

·1 < 0

⇒ by the diffusion equation ut = uxx, the average grey value
1

|σi|
∫

σi
u(x, t)x will

become smaller.

78

14.1 Conservation of the average grey value

Let us consider a special property of diffusion equations

ut = ∇ · (∇u), (14.5)

namely the so-called divergence form: the right hand side is of the form

∇· < member of the vector field > (14.6)

The divergence form enables the application of the Theorem of Gauß, leading to

d

dt
ui(t) =

1

|σi|

∫

∂σi

∇u · ~ns, (14.7)

see (14.4), where

ui(t) :=
1

|σi|

∫

σi

u(~x, t)~x (14.8)

is the average grey value of the pixel σi.

In the following, let us employ, for any pixel σi, the ordering of boundary segments
as sketched here:

li2
li3 σi li1

li4

(14.9)

Also, for adjacent pixels, we specify the directions of outer unit normal vectors:

σk

↑ ~nik

~nil←− ↓ ~nki ~nji←−
σl σi σj−→

~nli ↑ ~nmi

−→
~nij

↓ ~nim

σm

(14.10)

Note, that for adjacent pixels as in (14.9) - (14.10), e.g. σi and σj, we have

• li1 = lj3

79

• ~nij = −~nji

As ∇u is nothing else than a vector-valued function evaluated along pixel bound-
aries between pixels σi and σj , we have by ~nij = −~nji:

∫

∂σi∩∂σj

∇u · ~nijs = −
∫

∂σi∩∂σj

∇u · ~njis (14.11)

Result No.1:
By the flux over a boundary segment ∂σi ∩ ∂σj , no additional amount of grey is
generated or annihilated. What flows out of σi over lij is added in σj , and vice
versa.
Furthermore, let us briefly comment on ∇u · ~nij . A standard formula for scalar
products reads:

cos ∠(∇u, ~nij) =
∇u · ~nij

‖∇u‖2 · ‖~nij‖2
here
=
∇u · ~nij

‖∇u‖2
(14.12)

This means:

∇u · ~nij = ‖∇u‖2 · cos ∠(∇u, ~nij). (14.13)

Result No.2:

• if ∇ ‖ ~nij and they point in the same direction, then ∇u · ~nij = ‖∇u‖2 is
maximal,

• if ∇u ‖ ~nij and they point in opposite directions, the flow given by ∇u ·~nij =
−‖∇u‖2 is minimal,

• if ∇u ⊥ ~nij, we have zero flow: ∇u · ~nij = 0.

Let us now consider diffusion over a complete image, i.e., over a connected set
{σi}i=1,...,N of pixels.

Sketch:

σN−1 σN

... . .
.

σ1 σ2 . . .
∂Ω

(14.14)

In this context, it is practical to use the average grey value at time t, obviously
given by

U(t) :=
1

N

N∑

i=1

ui(t) (14.15)

80

Then the temporal change of the average grey value van be computed as:

d

dt
U(t) =

d

dt

[

1

N

N∑

i=1

ui(t)

]

=
1

N

N∑

i=1

[
d

dt
ui(t)

]

(14.7)
=

1

N

N∑

i=1

[
1

|σi|

∫

∂σi

∇u · ~ns

] (14.16)

Having again a look at our sketch (14.14), we observe that for any pixel σi, we can
decompose ∂σi in contributions

∂σi ∩ ∂σj , j ∈ N(i), (14.17)

where N(i) is the index set corresponding to neighboring pixels of σi, and

∂σi ∩ ∂Ω, (14.18)

if some part of ∂σi is not shared with another pixel. Thus, we obtain from (14.16)-
(14.18).

d

dt
U(t) =

1

N

N∑

i=1

1

|σi|
∑

j∈N(i)

∫

∂σi∩∂σj

∇u · ~nijs +
1

|σi|

∫

∂σi∩∂Ω

∇u · ~ns

 .(14.19)

Let us now employ (14.11). For this, let us note, that by the summation over all
pixels i = 1, . . . , N in (14.19), we have at each inner boundary segment ∂σk ∩∂σk′ ,
k, k′ ∈ {1, . . . , N}, exactly two contributions:

N∑

i=1

1

|σi|
∑

j∈N(i)

∫

∂σi∩∂σj

∇u · ~nijs

∣
∣
∣
∣
∣
∣
∂σk∩∂σk′

=
1

|σi|

∫

∂σk∩∂σk′

∇u · ~nkk′s +
1

|σi|

∫

∂σk′∩∂σk

∇u · ~nk′ks.

(14.20)

Assuming that the pixels are the same, |σk| = |σk′|, which we usually have, since
pixels in an image do not vary in size, we obtain equivalently to (14.20):

1

|σi|

[
∫

∂σk∩∂σk′

∇u · ~nkk′s +

∫

∂σk′∩∂σk

∇u · ~nk′ks

]

. (14.21)

Since (∂σk ∩ ∂σk′) = (∂σk′ ∩ ∂σk), we use (14.11) with ~nkk′ = −~nk′k to conclude:

81

∫

∂σk∩∂σk′

∇u · ~nkk′s +

∫

∂σk′∩∂σk

∇u · ~nk′ks

=

∫

∂σk∩∂σk′

∇u · ~nkk′s−
∫

∂σk′∩∂σk

∇u · ~nkk′s = 0.
(14.22)

As we have exactly the same result than in (14.22) at any inner pixel boundary
segment, we obtain

N∑

i=1

1

|σi|
∑

j∈N(i)

∫

∂σi∩∂σj

∇u · ~nijs

 = 0, (14.23)

and thus

d

dt
U(t) =

1

N

N∑

i=1

[
1

|σi|

∫

∂σi∩∂Ω

∇u · ~ns

]

. (14.24)

Result No.3:

• By the divergence form of the diffusion, all fluxes in the inner part of an
image cancel each other when computing the complete flow.

• Changes of the average grey value of an image occur only due to fluxes over
the image boundary if the filter is of divergence form.

Of specific interest − as it is an invariant or stability property of the diffusion
problem − is the case

d

dt
U(t) = 0 (14.25)

By (14.24), the property (14.25) can only be achieved if

(i) inflow and outflow over the image boundary are exactly in balance, or

(ii) ∇u ≡ ~0 along ∂Ω.

We concentrate for the moment on situation (ii), leading to the following notion

Definition 14.1.1 The boundary condition of the form

∇u = 0 at ∂Ω (14.26)

is called von Neumann boundary conditions.

82

14.2 Summary of §14.1

• By von Neumann boundary conditions, the average grey value is conserved
forever.

• By the divergence form, it is important that no amount of grey is generated
of annihilated by fluxes over pixel boundaries.

• Changes of the average grey value take place only by the fluxes over the
image boundary.

83

84

Chapter 15

Construction of numerical
schemes for diffusion filters

We begin with the basic form of a diffusion equation.

ut = ∇ · (D∇u). (15.1)

Using average greyvalues, this leads as in §14 to the evolution equation

d

dt
ui(t) =

1

|σi|

∫

∂σi

(D∇u) · ~ns, (15.2)

i.e., taking into account the four pixel boundary segments li1, . . . , li4, to

d

dt
ui(t) =

1

|σi|

4∑

k=1

∫

lik

(D∇u) · ~ns. (15.3)

15.1 Time integration

In order to obtain a numerical scheme from (15.3), one has to integrate for every
pixel σi the ordinary differential equation (ODE) (15.3) in time. For the left hand
side of (15.3) follows:

∫

t

t + δt

[
d

dt
ui(t)

]

t = ui(t + δt)− ui(t). (15.4)

For the right hand side we have

1

|σi|

∫

t

t + δt

{
4∑

k=1

∫

lik

(D∇u) · ~ns

}

t (15.5)

85

This means, we have to integrate in time the values of D∇u along li1, . . . , li4,
however D∇u generally changes during the time evolution over [t, t + δt].
Modelled in 1-D, we have to integrate at a spatial integration point the function
D∇u(t), the space variable is kept fixed:

(15.6)

For a numerical method, it is appropriate to consider a numerical approximation,
or quadrature, of the above integral, which is distinguished via the choice of the
quadrature rule applied to D∇u(t′) over [t, t + δt].

Definition 15.1.1 Let us denote the time integration weight by

t∗ := tΘ + (1−Θ)[t + δt], Θ ∈ [0, 1]

(i) The choice

Θ = 1 ⇔ t∗ = t (15.7)

is called the Euler forward time integration, it is first-order accurate.
Sketch:

Quadrature by choosing the left boundary point of [t, t + δt].

(ii) The choice

Θ = 0 ⇔ t∗ = t + δt (15.8)

is called the Euler backward time integration, it is also first-order accurate.
Sketch:

86

Quadrature by choosing the right boundary point of [t, t + δt].

(iii) The choice

Θ =
1

2
⇔ t∗ = t +

δt

2
(15.9)

is called the Crank-Nicolson scheme. It is second-order accurate.
Sketch:

Quadrature by choosing the middle of [t, t + δt].

(iv) For unspecified Θ, or varying Θ during a computation, the general choice

t∗ = t ·Θ + (1−Θ)[t + δt] (15.10)

is often called the Θ-scheme.

Remarks:

(i) For only one integration point, the Crank-Nicolson offers the best accuracy.

(ii) Let us stress, that image data is given at time t. Thus, except for Θ = 1,
i.e., except for the Euler forward method, all other choices of Θ take into
account future values at t + δt. The Euler forward method is explicit. All
other Θ-methods are implicit.

(iii) It is possible to circumvent some of the difficulties associated with the implic-
itness of the Crank-Nicolson scheme: In a first step, one may compute from
the data at time t a predicted value at the integration time t+ δt

2
, and use this

predicted value for integration. This leads to explicit Predictor-Corrector,
or Runge-Kutta methods.

87

Sketch:

15.2 Spatial integration

Let us consider for the moment the most simple time integration method, i.e.,
the Euler forward scheme. This means, (15.5) yields, as the length of the interval
[t, t + δt] is δt:

1

|σi|

∫

t

t + δt

[
4∑

k=1

∫

lik

(D∇u) · ~ns

]

t′ ≈ δt

|σi|

4∑

k=1

∫

lik

(D∇u)
∣
∣
∣
t
· ~ns. (15.11)

We now omit for a simplified notation the time index t. Then, let us remember
the pixel geometry.

Sketch:

Assuming uniform pixel sizes, we can compute

|σi| = l2ik for any k ∈ {1, 2, 3, 4},
= h2 for h = ∆x = ∆y (as assumed).

(15.12)

We choose now as quadrature points along the boundary segments lik their mid
points:

88

Sketch:

Then, the boundary integrals in (15.11) are approximated as

∫

lik

(D∇u) · ~ns ≈ h · [(D∇u) · ~n]
∣
∣
∣
mik

(15.13)

It is clear, how the unit outer normal vectors ~n are chosen in mik:

• along x-direction, we have ~n = (±1, 0)⊤

• along y-direction, we have ~n = (0,±1)⊤.

Thus, at each point mik, we only need the x- or y-component of D∇u, respectively.
Let us consider the right boundary segment of σi:

Sketch:

As D typically relies in a nonlinear way on u, there is the problem, how to compute
u along li1 from the given greyvalue averages ui, ui+1. In diffusion problems, one
can often circumvent this problem, computing

Di ≡ D(ui) and Di+1 ≡ D(ui+1) (15.14)

and choosing at mi1:

D
∣
∣
∣
mi1

=: Di+ 1

2
:=

Di + Di+1

2
. (15.15)

89

What remains is to approximate ∇u|mi1
. This is easiest done as:

∇u
∣
∣
∣
mi1

= ∇u · n
∣
∣
∣
i+ 1

2

≈ 1

h
(ui+1 − ui) (15.16)

In the other directions, the procedure is analogously. Remarks:

(i) Further refinements are possible, especially considering the evaluation of a
full diffusion tensor D. For instance, one may first evaluate D∇u, and dis-
cretise the arising contributions.

(ii) To achieve higher order spatial accuracy, the procedure can become quite
complicated. It is also possible not to consider the “physics” of diffusion in
such a detail as above; however, a lack of accuracy in such a model may
generate principle errors.

(iii) For D = I, we retrieve in the end from (15.14) - (15.16) the usual difference
formula, for h = ∆x = ∆y, and t = nδt,

un+1
i,j = un

i,j −
δt

∆x2

(
un

i+1,j − 2un
i,j + un

i−1,j

)
(15.17)

− δt

∆y2

(
un

i,j+1 − 2un
i,j + un

i,j−1

)
.

(iv) Technically, we have used in this lecture a so-called Finite-Volume set-up,
which is equivalent to Finite Differences but highlights the “physics” of dif-
fusion.

90

91

92

Chapter 16

Hyperbolic PDEs

Motivation: Hyperbolic PDEs may arise, in Shape from Shading, mathematical
morphology, skeletonisation, and other processes.

In order to assess general numerical principles for this type of equations, it is useful
to consider 1-D hyperbolic PDEs of the form

ut + f(u)x = 0, u ≡ u(x, t), x ∈ R, t > 0. (16.1)

The function f in (16.1) is called flux function.

16.1 Conservation form and consistency

As the PDE (16.1) is of divergence form, it seems to be at first glance similar to
diffusion equations. This leads us to formulate

Definition 16.1.1 A discretisation of (16.1) which can be written in the form

un+1
j = un

j −
∆t

∆x
(gj+ 1

2
− gj− 1

2
) (16.2)

is called (grey-value) conservative. The function g, where for a 3-point scheme

gj+ 1

2
≡ g(un

j , u
n
j+1), (16.3)

gj− 1

2
≡ g(un

j−1, u
n
j)

holds, is called numerical flux function.

Remarks:

• The average grey value

1

N

N∑

j=1

uj

93

over an interval of N pixels does not change, but only due to fluxes at the
interval ends:

N∑

j=1

un+1
j =

N∑

j=1

(

un
j −

∆t

∆x
(gj+ 1

2
− gj− 1

2
)

)

(16.4)

=

N∑

j=1

un
j −

∆t

∆x
(gN+ 1

2
− g 1

2
)

• We can write the consistency of the method (16.2), (16.3) in terms of the
condition

g(u, u) = f(u) (16.5)

For more arguments of g, (16.5) can be extended accordingly.

16.2 Weak formulation

In general, solutions of hyperbolic PDEs of type (16.1) have a devastating feature:
even initial data given in the form of functions from C∞ (e.g. sine, cosine) produce
discontinuous solutions. This is relevant as e.g. edges are important discontinous
solution features. As ∂u

∂t
, ∂u

∂x
are not defined at discontinuities, we want to get rid

of the derivatives. This is done by the following trick. First, we multiply the PDE
(16.1) with a so-called test function ϕ(x, t) ∈ C∞

0 , where the lower index 0 stands
for finite support, i.e.

support(ϕ) = {(x, t)|ϕ(x, t) 6= 0} ∪ ∂{(x, t)|ϕ(x, t) 6= 0} (16.6)

⊆ [a, b]× [c, d], |a|, |b|, |c|, |d| <∞,

yielding

ϕut + ϕf(u)x = 0. (16.7)

Now we integrate (16.7) over space (from −∞ to∞) and time (starting with t = 0,
up to ∞):

∫ ∞

0

∫ ∞

−∞

ϕut + ϕf(u)xdxdt = 0. (16.8)

Assuming that we can switch the integration order of space and time integration,
we apply the partial integration rule to obtain for the corresponding parts in (16.8):

∫

0

∞ϕutt = [ϕu]
∣
∣∞

0
−
∫

0

∞ϕtut (16.9)

= −ϕ(x, 0)u(x, 0)−
∫

0

∞ϕtut

94

(adding relevant arguments) since ϕ ≡ 0 for t→∞ as it has finite support, and
∫

−∞

∞ϕf(u)xx = [ϕf(u)]
∣
∣∞

−∞
−
∫

−∞

∞ϕxf(u)x (16.10)

= −
∫

−∞

∞ϕxf(u)x

since ϕ ≡ 0 for x→ ±∞ as it has finite support, see (16.6). Plugging (16.9)-(16.10)
into (16.8) leads, after a few trivial rearrangements, to

∫ ∞

0

∫ ∞

−∞

ϕtu + ϕxf(u)dxdt = −
∫

−∞

∞ϕ(x, 0)u(x, 0)x. (16.11)

Definition 16.2.1 For arbitrarily chosen test functions ϕ and for initial values
u(x, 0), a solution u(x, t) of (16.11) is called a weak solution, or distributional solution,
of the PDE (16.1).

Note that derivatives are now taken from the smooth test function ϕ, not from u
and f(u) anymore. Note also that the relation (16.11) needs to hold for an infinite
number of test functions.
It is crucial to understand that (16.11) is the relevant form, not the original PDE
(16.1) anymore. The latter is meaningful only in parts where u is at least in C1.

16.3 Diffusion a.k.a. viscosity solutions

While we have gained that weak solutions admit edges in solutions of PDEs, there
is a trade-off. Weak solutions are in general not unique anymore. Without go-
ing into details, let us simply notice the fact that once a discontinuity arises,
infinitely many (!) weak solutions are generated.
There is only one particular, “intuitively” correct weak solution we are usually in-
terested in. The question is, how to pick exactly this one out, and how to compute
it.
The basic idea is as follows. First we add a small diffusion term to the original
PDE (16.1), controlled by a small parameter ε > 0:

ut + f(u)x = εuxx. (16.12)

By the diffusion term εuxx, any solution of (16.12) is smeared out slightly and will
be in C∞. The idea is then to retreive the correct solution of ut + f(u)x = 0 in
the limit of vanishing diffusion. This leads to

Definition 16.3.1 By the physical interpretation of the εuxx-term arising in fluid
dynamics, a solution of (16.12) , for ε→ 0, is called viscosity solution of the PDE
(16.1).

95

Remark:The viscosity solution is also often called entropy solution in the litera-
ture, a notion arising from gas dynamics.

16.4 Theory of numerical methods

We are lucky in two good news in the form of the following theorems:

Theorem 16.4.1 (of Lax and Wendroff (1960)) Given a numerical method
approximating (16.1) which is consistent and conservative. Let λ = ∆t

∆x
be a con-

stant. Then, for ∆t, ∆x→ 0, if the scheme converges to some function, then u is
a weak solution of (16.1).

For the second theorem, let us before give the following definition:

Definition 16.4.1 Let us define explicit monotonic methods as follows. If we
write an explicit 3-point scheme as

un+1
j = H(un

j−1, u
n
j , u

n
j+1) (16.13)

then the scheme is monotone, if and only if

∂H
∂un

i

≥ 0 (16.14)

for all i ∈ {j − 1, j, j + 1} and for all possible values arising as arguments of H.

Remark: An exact viscosity solution of (16.1) satisfies some monotonicity property:

u1(x, 0) ≥ u2(x, 0) ⇒ u1(x, t) ≥ u2(x, t) ∀t > 0, (16.15)

if u1, u2 are put as initial conditions into (16.11). The above defined notion of
monotonicity of a method ensures that the analogous property of approximate
solutions holds at the discrete level.

Theorem 16.4.2 (of Crandall and Majda (1980)) Consistent, conservative and
monotone schemes approximating (16.1) also approximate its unique viscosity so-
lution.

To summarise, having a monotone scheme, everything is good - at least in theory.
However, there is also a stone in the garden of this theory:

Theorem 16.4.3 (of Goodman and LeVeque (1985)) Monotone methods are
always only first order accurate.

96

Chapter 17

High-Resolution Schemes for
Hyperbolic PDEs

We now study a successful principle for solving hyperbolic PDEs by the example
of the model problem

ut + f(u)x = 0 (17.1)

Basic discretisations work as follows:

• Monotone schemes are only first-order accurate, i.e. they introduce a blur-
ring effect, but they are needed at discontinuities.

• Higher-order schemes are accurate for smooth solutions, but they are oscil-
latory at discontinuities.

The idea is now to marry these two building blocks and to define a hybrid scheme.
The construction is guided by the following principles:

• At discontinuities, apply the low order, monotone scheme.

• At smooth parts, apply the high-order scheme.

• Perform a mixture depending on the smoothness of the data.

We consider consistent, conservative approximations of (17.1) of the form

Um+1
j = Um

j −
∆t

∆x

(

gj+ 1

2
− gj− 1

2

)

(17.2)

Identifying

gH
j+ 1

2

, flux of high-order method

gL
j+ 1

2

flux of low-order method
(17.3)

97

We may introduce a “switch function” into the numerical fluxes from (17.2) as by

gj+ 1

2
:= gL

j+ 1

2

+ φj+1

(

gH
j+ 1

2

− gL
j+ 1

2

)

(17.4)

This means that for φj+ 1

2
= 1 we get the high-order flux and for φj+ 1

2
= 0 the

low-order flux. We will allow φ to take on a wider range of values.
Following the construction idea, we will base the values of φ on a smoothness measure.
For a flow directed from left to right, we will use the directed ratio of consecutive gradients.

Θ+
j :=

Um
j − Um

j−1

Um
j+1 − Um

j

(17.5)

For a flow in opposite direction we choose

Θ−
j :=

Um
j+1 − Um

j

Um
j − Um

j−1

(17.6)

One can prove the following assertions for the limiter φ.

Theorem 17.0.4 (Theorem of Harten & Sweby) For

0 ≤ φ(Θ)

Θ
≤ 2 and 0 ≤ φ(Θ) ≤ 2 (17.7)

the hybrid scheme defined by (17.2)-(17.4) does not introduce oscillations. If, in
addition, φ satisfies

φ(1) = 1 (17.8)

and if it is pointwise a convex combination of (17.3) then the hybrid scheme will
be of higher order, except at discontinuities and data extrema.

The boundaries of the resulting “allowed” regions are made up of the Minmod-
Limiter

φ(Θ) = max (0, min(1, Θ)) (17.9)

and the Superbee-Limiter

φ(Θ) = max(0, min (0, min(1, 2Θ), min(Θ, 2)) (17.10)

A practical issue arising for all explicit schemes is the so-called CFL-condition
(after Courant, Friedrichs and Lewy (1928)).
We study it by the example of the linear advection equation

ut = aux = 0, a > 0 (17.11)

98

and its upwind discretisation

Um+1
j = Um

j −
∆t

∆x
a(Um

j − Um
j−1) (17.12)

Let us simplify the initial data as

U0
0 := 1, U0

k := 0 for k 6= 0 (17.13)

For a ·∆t = ∆x we obtain by (17.12) and (17.13)

U1
1 = 1, U1

k = 0 for k 6= 1 (17.14)

i.e. the value u0
0 = 1 has travelled in one time step exactly one point in flow

direction. Investigating (17.12), we see that

Um+1
j = (1− ∆ta

∆x
)Um

j +
∆ta

∆x
Um

j−1 (17.15)

is of the format of a convex combination, and for

∆t >
∆x

a
(17.16)

we would not obtain that Um+1
j is in the convex hull of Um

j and Um
j−1.

We can give the condition

∆t ≤ ∆x

a
(17.17)

an interpretation. Rewriting it as

a∆t ≤ ∆x (17.18)

it means that information from any one point j that travels with velocity a is only
allowed to travel in one time step up to the next point j ± 1 which is ∆x away.
This CFL-Condition (17.18) is a necessary property for stability.
In non-linear problems one must compute the largest velocity amax within the
computational domain. Then the time step size ∆t must be chosen such that
(17.18) is satisfied for a = amax. This has to be done for each time step.

99

100

Chapter 18

Upwinding

The most popular schemes used for hyperbolic PDEs in image processing are so-
called upwind schemes. Let us illustrate the idea at hand of the linear advection
equation

ut + aux = 0. (18.1)

The PDE (18.1) needs to be supplemented by an initial condition

u(x, 0) := u0(x). (18.2)

The solution of (18.1)-(18.2) is

u(x, t) := u0(x− at). (18.3)

Let us verify this. Assume (18.3) is true, then:

∂

∂t
u(x, t) =

∂

∂t
[u0(x− at)] = u′

0(x− at) · (−a), (18.4)

a
∂

∂x
u(x, t) = a · ∂

∂x
[u0(x− at)] = au′

0(x− at) · 1. (18.5)

Computing (18.4) and (18.5) gives zero as required by solving the PDE.

Let us stress, that we observe that the hyperbolic transport only goes in one
direction determined by the sign of a at each point x. This is in contrast to
diffusion.
The notion of “upwinding” comes from thinking of a sail boat which turns its sails
into the direction of the wind. For a numerical method this means in analogy, that
we have a one-sided stencil which is turned into the “wind direction” described by
the velocity a:

101

• If we are sitting in a pixel xj and consider transport to the right, then we
feel the wind blowing from the left and use information from pixel xj−1 to
discretise ux:

ux ≈
un

j − un
j−1

∆x
(18.6)

• Analogously, for a < 0 we feel the wind blowing from the right and use
information from pixel xj+1 to discretise ux:

ux ≈
un

j+1 − un
j

∆x
(18.7)

Using the Euler time discretisation method, we obtain for a > 0 the upwind scheme

un+1
j = un

j − a
∆t

∆x
(un

j − un
j−1), (18.8)

for a < 0 the procedure is analogously.
We may write this in terms of a scheme function H as in (16.13), which gives

H(un
j−1, u

n
j) = un

j − a
∆t

∆x
(un

j − un
j−1) =

(

1− a∆t

∆x

)

un
j +

a∆t

∆x
un

j−1. (18.9)

The scheme is monotone under restriction on the time step size:

∂H

∂un
j−1

=
a∆t

∆x
≥ 0 for a > 0 (see above),

∂H

∂un
j

= 1− a∆t

∆x

!
≥ 0 ⇔ ∆t ≤ ∆x

a
(18.10)

Remarks:
The condition on the time step size (18.10) is called CFL-condition (Courant,
Friedrichs, Lewy (1928)). A restriction on the time step size is typical for hy-
perbolic and parabolic problems. The meaning is, that information can only be
transported at a rate of up to one pixel per time step.

102

Chapter 19

Stability

In the analysis of numerical schemes for differential equations, three concepts are
intimately connected (Lax and Richtmyer (1956)):

• Consistency

• Stability

• Convergence

Consistency means especially:
The local truncation error is an expression of the mesh width h and goes to zero
if h→ 0.

Convergence means:
For vanishing mesh width h→ 0, the solution of the discrete problem - i.e. of the
scheme - becomes identical to the solution of the differential problem - i.e. of the
PDE. This is the “ultimate property” saying that discrete and differential world
fit.

What is the difference between consistency and convergence?
To give an answer, let us consider some approximation of a PDE over Ω = [0, 1],
having at pixel i the local truncation error Li(h). Let us assume we have n pixels,
or cells, so that n · h = 1, i.e., Ω is made up of n cells of width h. Then, at
each point the local truncation error Li(h) arises, i.e. over Ω we obtain the total

approximation error E(h) =
n∑

i=1

Li(h).

Then the following issue arises:
While the individual Li(h) go to zero for h→ 0, there may be some subset p ⊂ Ω

103

for which this goes very slowly. For h→ 0, and consequently n→∞ as n · h = 1,
we get

E(h) =
∑

i,ih 6∈p

Li(h)

︸ ︷︷ ︸

(a)

+
∑

i,ih∈p

Li(h)

︸ ︷︷ ︸

(b)

. (19.1)

While the individual terms Li(h) arising in (b) may go to zero, the sum may
diverge.

Is there a remedy? Exactly the remedy to this phenomenon is often called stability
property. Its role is to ensure a condition so that convergence (and E(h) → 0) is
guaranteed.

Stability can be understood as a combination of three aspects.

• Aspect No.1: We say that a numerical approximation of a PDE is stable, if
it mimics important structural properties of the discretised PDE. As there
may be several of such properties, one speaks of “stability with respect to 〈
important property 〉”.
Example: For the Laplace equation with Dirichlet boundary conditions, we
identified a minimum-maximum-principle. A stable scheme should fit a dis-
crete minimum-maximum-principle.

• Aspect No.2: Stability is usually related to a bound on the numerical solu-
tion, or of a number extracted from it. Note that such a bound may rely on
the norm in use.
Example: For hyperbolic PDEs, the monotony property implies because of
a ≥ u0 ≥ b ⇔ a ≥ u ≥ b an upper and lower bound in the L∞-norm on the
solution. A stable scheme is stable with respect to the L∞-norm.

• Aspect No.3: A stability notion should be a necessary ingredient to prove
convergence (along with corresponding assumptions on the solution).
Example: Rotational invariance is a structural property of solutions of the
Laplace equation. However, it is not crucial for convergence. Thus, it is not
a stability notion, but refers to an accuracy problem in the discrete setting.

What about non-linear stability? Above we mentioned the Laplace equation which
is linear. However, the discrete minimum-maximum principle is also meaningful in
the nonlinear case, and it is our most important stability property in many cases,
as it ensures the absence of numerical oscillations that can be misinterpreted as
noise.

104

Chapter 20

Fast Marching

The goal is now to construct an efficient algorithm for solving the hyperbolic
Eikonal equation

|∇T |F = 1 (20.1)

subject to boundary conditions. PDEs of this type arise, e.g. in Shape from
Shading. The PDE (20.1) describes the motion of a curve in its normal directions.
Thereby,

• T (x, y) ∈ R is the arrival time, i.e. the time the initial curve arises at (x, y),

• F is the speed function, F > 0 means that the curve moves ourward.

For establishing what can be done numerically, we consider the general Hamilton-Jacobi
equation

Ut + H(Ux, Uy) = 0. (20.2)

The function H is known as the “Hamiltonian”, for the boundary value problem
(20.1) we have the Hamiltonian

H(Ux, Uy) = F
√

U2
x + U2

y − 1 (20.3)

Let us focus on a 1-D version of (20.2), i.e.

Ut + H(Ux) = 0. (20.4)

If we let Ux = u and differentiate,

∂

∂x
[Ut + H(u)] = (Ut)x + H(u)x (20.5)

= (Ux)t + H(u)x,

105

i.e.

ut + H(u)x = 0. (20.6)

The PDE (20.6) is of the form (16.1) we are already used to, this is called
conservation law form. Identifying the conservation form from (16.1) with (20.6),
we obtain H(u) = g(u, u) with

Hi+ 1

2
≈ g(un

i , u
n
i+1), Hi− 1

2
≈ g(un

i−1, u
n
i) (20.7)

at the points (i± 1
2
)∆x, respectively.

Going now from (20.6) back to the PDE (20.4), we see that we can write this as

Ut + H(u) = 0, u := Ux. (20.8)

Needing a value for H(un
i), we get from (20.7) by shifting indices

H(un
i) ≈ g(ui− 1

2
, ui+ 1

2
) = g(Ux

∣
∣
i− 1

2

, Ux

∣
∣
i+ 1

2

) (20.9)

Simple and convenient discretisations of Ux

∣
∣
i± 1

2

are given by

Ux

∣
∣
i− 1

2

≈ Ui − Ui−1

∆x
, Ux

∣
∣
i+ 1

2

≈ Ui+1 − Ui

∆x
. (20.10)

A convenient numerical flux function ĝ for the simple Hamiltonian

H(u) = u2 (20.11)

which we use as a building block is

ĝ(u1, u2) = max(u1, 0)2 + min(−u2, 0)2, (20.12)

after Osher and Sethian (1988), or

ĝ(u1, u2) = max(u1,−u2, 0)2, (20.13)

due to Rouy and Tourin (1992).

Extending the above 1-D procedure in a natural way to our 2-D equation F |∇U | =
1, we have instead of H(u) = u2 the Hamiltonian H(u, v) = F

√
u2 + v2 − 1. This

means, at pixel (i∆x, j∆y), we have

Fij

√

ĝ(ui− 1

2
,j, ui+ 1

2
,j) + ĝ(vi,j− 1

2
, vi,j+ 1

2
)− 1 = 0 (20.14)

with

ui± 1

2
,j := Ux

∣
∣
i± 1

2
,j
, vi,j± 1

2
:= Uy

∣
∣
i,j+ 1

2

, Ut = 0. (20.15)

Note, that Ut = 0 holds as we solve for a stationary boundary value problem.

106

How might one solve equation (20.14)?
Consider a grid point (i, j) and its four neighbours (i ± 1, j ± 1). Observe that,
with (20.13), (20.14) can be written as a quadratic equation for Uij , assuming the
values Ui±1,j, Ui,j±1 are given:

max

[
Uij − Ui−1,j

∆x
,
Ui+1,j − Uij

∆x
, 0

]2

+ max

[
Uij − Ui,j−1

∆y
,
Ui,j+1 − Uij

∆y
, 0

]2

=
1

F 2
ij

. (20.16)

Thus, one solution comes from iterating, updating the value of U at each grid
point according to (20.16) until a solution is reached. This is feasible but rather
slow.

The key to Fast Marching lies in the observation that the iteration above obeys a
causality principle.

What is causality?
We now systematically construct the solution by upwinding, using now the variable
T from (20.1). Causality means that we begin from the smallest T value, which is
supposed to be known - it is part of the boundary. We follow the front propagating
from these points in a thin zone around them, freezing the values we obtain with
increasing T .

Note, that

• the information of arrival times is propagated “downwind”,

• causality means that T can only increase.

20.1 The Algorithm

The algorithm distinguishes points as known, trial and far.
For initialisation, tag the boundary value points as “known”. These are the points
with the minimal arrival time. Then, tag as “trial” all points one grid point away.
Tag as “far” all other grid points.

After tagging points, solve (20.16) in all “trial” points. For this, employ the known
values of T in the points tagged as “known”. For the values of T in the “far”
points as well as for the “trial” points in the neighbourhood of point (i, j) under
consideration, use T ≡ ∞. This principle for defining the values is always used.

107

The update procedure then comes along as a loop.

Step 1: Let A be the “trial” point with the smallest T value computed via (20.16).

Step 2: Add the point A to “known”, remove it from “trial”.

Step 3: Tag as “trial” all neighbours of A that are not “known” or already “trial”.
Remove corresponding points from “far”

Step 4: Recompute the values of T at all “trial” neighbours of A according to
(20.16).

Step 5: Go to Step 1.

Remark: This algorithm is implemented efficiently by using a heap data structure
to store the T values.

Where is the difficulty?
The difficulty is, especially, to solve (20.16). The arising quadratic expression
needs a distinction of the possible cases for implementation.
A second difficulty in practice is to determine suitable points with minimal T as
starting points, as well as the minimal T values themselves. This can be a very
hard theoretical problem.

What is the benefit?
The algorithm works very fast, as every point is only visited once. The computa-
tional complexity is at worst O(n log n) if n is the number of pixels.

108

Chapter 21

Multigrid

We discuss the multigrid idea at hand of a model problem.

The model problem
We consider the 1-D Poisson problem

−u′′(x) = f(x), x ∈ (0, 1), u(0) = 0, u(1) = 1. (21.1)

We define a sequence of grid parameters

{
hl

}∞

l=0
, h0 :=

1

2
, hl :=

h0

2l
(21.2)

for the corresponding grid hierarchy

Ωl := Ωkl = {jk,l | j = 1, . . . , 2l+1 − 1} (21.3)

for l = 1, 2, . . ., where l is the grid index, see Sketch 21.
We now discretise (21.1) as usual:

u′′(j · hl) ≈:
U l

j+1 − 2U l
j + U l

j−1

h2
l

, (21.4)

f(j · hl) ≈: f l
j ,

Sketch:

0 1

Ω2

Ω1

Ω0
b b b

b b b b b

b b b b b b b b b

1

8

1

4

3

8

1

2

5

8

3

4

7

8

109

where

j = 1, . . . , Nl := 2l+1 − 1. (21.5)

Note that for our model problem, the upper index is really the grid index, not a
time level. By (21.4), the linear system

AlU
l = f l (21.6)

arises, where:

U l =

U l
1
...

U l
Nl

 , f l =

f l
1
...

f l
Nl

 , Al =

1

h2
l

2 −1 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 −1 2

(21.7)

The matrix A is irreducible and diagonally dominant.

For our demonstration, we consider the Jacobi-Relaxation-method:

U l
m+1 = (I − ωh2

l Al)
︸ ︷︷ ︸

=:Ml(ω)

U l
m + ωh2

l
︸︷︷︸

=:Nl(ω)

b. (21.8)

One can show:

Lemma 21.0.1 For any l, the eigenvectors el,j of Ml(ω) are given by

el,j =
√

2hl

sin jπhl

...
sin jπNlhl

 , j = 1, . . . , Nl, (21.9)

and the corresponding eigenvalues are

λl,j(ω) = 1− 4ω sin2

(
jπhl

2

)

, j = 1, . . . , Nl. (21.10)

Furthermore, the vectors

{el,1, . . . , el,Nl} (21.11)

are an orthogonal basis of the solution space RNl . As (21.11) gives a basis, the
residual between the initial vector U l

0 and the exact solution U l,∗ = A−1
l f l can be

written as

U l
0 − U l,∗ =

Nl∑

j=1

αje
l,j , αj ∈ R. (21.12)

110

Sketch: Distribution of eigenvalues λl,j
(
ω = 1

2

)
; x = j · hj is marked by crosses.

× ×
×

×
×

×
×

×
× ×

low medium high
frequencies

1

0

−1

x
1
2

Considering the first iteration step, we obtain

U l
1 − U l,∗ = Ml(ω)U l

0 + Nl(ω)f l (21.13)

− (Ml(ω)U l,∗ + Nl(ω)f l)

= Ml(ω)(U l
0 − U l,∗)

(21.12)
= Ml(ω)

Nl∑

j=1

αje
l,j (21.10)

=

Nl∑

j=1

λl,j(ω) · el,j.

Repeating this process yields the general formula

U l
m − U l,∗ =

Nl∑

j=1

αj(λ
l,j(ω))mel,j, m = 0, 1, (21.14)

Remark: In multigrid, we always, and only, deal with the residual, i.e. the error
function, not with the solution vector.

Let us have a look at Having in mind, (21.14), i.e. that the error can be expressed
in powers of the eigenvalues, we gain by Sketch 21 the following insights:

(1) The error for the medium eigenvalue frequencies are strongly damped.

(2) The error for high and low frequencies are damped in a significantly better
way.

(3) The finer the discretisation, the more frequencies we obtain that are only
weakly damped. This is linked to the spectral radius ρ(Ml(ω)) which in-
creases, bounded by 1.

111

Sketch

b b
b

b

b

b

b

b
b

b b x

1

1
2

1

λl,j
(

1
4

)

(4) It always holds

λl,1(ω) = −λl,Nl(ω) = ρ

(

Ml

(
1

2

))

, (21.15)

so that the spectral radius of our method cannot be decreased by choice of
ω.

In summary, we have the characteristic situation that a better approximation of
u on a finer grid not only gives larger systems of equations and thus a larger
computational effort per iteration, but also a drastic reduction in convergence
behaviour.
The basic idea of the multigrid method is to dampen the high-frequency errors
on a hierarchy of grids. To this end, it is practical to choose ω = 1

4
, so that

we obtain a qualitative eigenvalue distribution as in Sketch 21 After damping
the high frequencies of the error, what remains are low frequencies that describe
a smooth error. Consequently, an iterative scheme that does this job is called
smoother. We use this knowledge of the smoothness, as for a smooth function it
is reasonable to approximate it on a not-so-fine grid.

By repetition of these steps, we get the following idea of multigrid:

112

Sketch: Multigrid steps:

original problem,
fine grid No. 0

on each grid level:
iterative solver
damps high fre-
quencies

mapping to coarser grid

mapping to coarser grid

not-so-fine-grid
No.1, reduced
problem

even-more-not-
so-fine-grid No.2,
even more reduced
problem

It remains to construct mappings from finer to coarser grids (“Restrictions”) and
interpolators from coarser to finer grids (“Prolongators”), as we wish to solve
AlU

l = f l on the finest grid.

Simple examples are as follows:
Restriction

Rl−1
l =

1

4

1 2 1 0
1 2 1

. . .
. . .

. . .

0 1 2 1

∈ R

Nl−1×Nl, (21.16)

see 21.

× × × × ×

× ×

1
4

1
4

1
2

1
4

1
4

1
2

Ωl

Ωl−1

113

× × × × ×

× ×

1
2

1 1
2

1
2

1 1
2

Ωl

Ωl−1

Prolongation

P l
l−1 =

1

2

1 0
2
1 1

2
. . .

1
. . . 1
. . . 2

0 1

∈ R
Nl×Nl−1 , (21.17)

see 21. The computational methodology
Having after k steps of the smoother, a smooth error

el
k = U l

k − U l,∗, (21.18)

the vector el
k can readily be approximated on the grid Ωl−1. Let us once stress

again, that el
k is unknown, but we know it is smooth. With the defect (which we

can compute!)

dl
k := AlU

l
k − f l (21.19)

we get

Ale
l
k = Al(U

l
k − U l,∗) (21.20)

= AlU
l
k − AlU

l,∗

︸ ︷︷ ︸

=f l

= dl
k.

We get an approximation of el
k by solving (21.20) on the coarser grid Ωl−1, pro-

longing the computed solution afterwards to Ωl.
We thus consider

Al−1e
l−1 = dl−1 (21.21)

114

with the restricted defect (computed with dl
k from (21.19))

dl−1 = Rl−1
l dl

k. (21.22)

Having solved (21.22), we may repeat the process, or prolongate:

P l
l−1e

l−1 = P l
l−1A

−1
l−1d

l−1 (21.23)

gives an approximation of the sought error vector el
k. Summarising the above steps

for the two grids Ωl, Ωl−1 in use gives

U l,new
k = U l

k − P l
l−1A

−1
l−1R

l−1
l (AlU

l
k − f l) (21.24)

Remarks:

• In reality, we would start on a coarse level as this is practicable.

• It pays off to consider certain sequences of Restrictions/Prolongations: V-
cycles, W-cycles and combinations of them.

115

