
Numerical Algorithms for Visual Computing III 2011
Example Solutions for Assignment 8

Problem 1 (Gram-Schmidt Sucks Reloaded)
The goal of this exercise is to show at hand of two simple examples that the
method of Gram and Schmidt may be subject to strong numerical errors,
which may appear for large vectors or small machine accuracy.

1. Let us begin our analysis by considering both matrices first analytically
and then numerically, we will then compare these results. Beginning
with matrix A1:

A1 :=


1 0
1 2
0 1
0 1


we have

w1 :=


1
1
0
0

 w2 :=


0
2
1
1


Then we can compute the orthogonal vectors q1, q2 as follows:

q1 :=
w1

‖w1‖
=

1√
2


1
1
0
0


q′2 := w2 − 〈w2, q1〉q1

=


0
2
1
1

−
〈

0
2
1
1

 ,
1√
2


1
1
0
0


〉

1√
2


1
1
0
0



=


0
2
1
1

−


1
1
0
0

 =


−1

1
1
1



q2 :=
q′2
‖q′2‖

=
1

2


−1

1
1
1


1



Computing numerically with 4-digit precision gives us:

q1 :=
w1

‖w1‖
= 0.7071


1
1
0
0


q′2 := w2 − 〈w2, q1〉q1

=


0
2
1
1

−
〈

0
2
1
1

 ,


0.7071
0.7071

0
0


〉

0.7071
0.7071

0
0



=


0
2
1
1

− 1.4142


0.7071
0.7071

0
0

 =


−0.9999

1.0001
1
1



q2 :=
q′2
‖q′2‖

=


−0.4999

0.5001
0.5
0.5


For our second matrix we can compute analytically

A2 :=


8 21

13 34
21 55
34 89


we have

w1 :=


8

13
21
34

 w2 :=


21
34
55
89



2



Then we can compute the orthogonal vectors q1, q2 as follows:

q1 :=
w1

‖w1‖
=

1√
1830


8

13
21
34


q′2 := w2 − 〈w2, q1〉q1

=


21
34
55
89

−
〈

21
34
55
89

 ,
1√

1830


8

13
21
34


〉

1√
1830


8

13
21
34



=


21
34
55
89

− 4791

1830


8

13
21
34

 =
1

1830


102
−63

39
−24



q2 :=
q′2
‖q′2‖

=
1√

16470


102
−63

39
−24


Computing with 4-digit accuracy, this looks as follows

q1 :=
w1

‖w1‖
= 0.0234


8

13
21
34

 =


0.1872
0.3042
0.4914
0.7956


q′2 := w2 − 〈w2, q1〉q1

=


21
34
55
89

−
〈

21
34
55
89

 ,


0.1872
0.3042
0.4914
0.7956


〉

0.1872
0.3042
0.4914
0.7956



=


21
34
55
89

− 112.1094


0.1872
0.3042
0.4914
0.7956

 =


21
34
55
89

−


20.9869
34.1037
55.0906
89.1942

 =


0.0131
−0.1037
−0.0906
−0.1942



q2 :=
q′2
‖q′2‖

= 4.1942


0.0131
−0.1037
−0.0906
−0.1942

 =


0.0550
−0.4349
−0.3800
−0.8145
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2. Now let us compare the analytical results with the numerical results.
Obviously we would expect that the two vectors that we get by the
Gram-Schmidt method to be orthogonal, i.e. it should hold

cos(α) =
〈q1, q2〉
‖q1‖ · ‖q2‖

and α = 90◦ for orthogonal vectors. Computing for the analytical so-
lution for the orthogonal vectors of matrix A1, we get

cos−1(〈q1, q2〉) = cos−1(
1

2
√

2
− 1

2
√

2
) = cos−1(0) = 90◦

so this is the desired result. However, for the numerical solution, we get

cos−1(〈q1, q2〉) = cos−1(0.0001) =≈ 89.9943◦

which is nearly orthogonal, but shows that already significant nume-
rical issues may arise. Coming to matrix A2, we get for the analytical
computed vectors

cos−1(〈q1, q2〉) = cos−1(0) = cos−1(0) = 90◦

but for the numerical solution

cos−1(〈q1, q2〉) = cos−1(−0.9569) = cos−1(0) = 163.1170◦

we can see quite a devastating effect, i.e. the resulting vectors are not
orthogonal to each other.

3. We neglect for part three the vectors q1 and q2 of matrix A1 and only
consider the results from matrix A2. As vector w1 = q1 = q̃1 is already
normalized, we only need to find a vector q̃2 with the Gram-Schmidt
algorithm:

q̃2 = w2 − 〈w2, q̃1〉q1

=


0.0550
−0.4349
−0.3800
−0.8145

− 〈


0.0550
−0.4349
−0.3800
−0.8145

 ,


0.1872
0.3042
0.4914
0.7956

〉


0.1872
0.3042
0.4914
0.7956



=


0.0550
−0.4349
−0.3800
−0.8145

 + 0.9569


0.1872
0.3042
0.4914
0.7956



=


0.0550
−0.4349
−0.3800
−0.8145

 +


0.1796
0.2919
0.4715
0.7635

 =


0.2346
−0.1430

0.0915
−0.0510
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Then the scalar product between q̃1 and q̃2 is 0.0048 which results in an
angle of 89.7250◦. So a successive application may help orthogonalising
vectors that have not been orthogonal in the first hand, however one
should always consider numerical issues arising due to small machine
accuracy.

Problem 2 (Gram-Schmidt Sucks Revolutions)

A :=

 1 2 1
0 1 2
1 2 0


Algorithm of the modified Gram-Schmidt:

for k = 1...n

rkk = ||ak||2
qk = 1/rkk · ak
for j = (k + 1)...n

rkj = q>k aj

aj := aj − rkjqk
end

end

Solution:

In this exercise, we have: a1 =

1
0
1

 , a2 =

2
1
2

 and a3 =

1
2
0

.

Now, we use the algorithm from above for k = 1, 2, 3:

5



For k = 1 and j = 2, 3, we get:

r11 = ||a1||2 =
√

2

q1 =
1

r11
· a1 =

 1√
2

0
1√
2


r12 = q>1 a2 =

 1√
2

0
1√
2

> ·
2

1
2

 = 2
√

2

a2 := a2 − r12q1 =

2
1
2

− 2
√

2 ·

 1√
2

0
1√
2

 =

0
1
0


r13 = q>1 a3 =

 1√
2

0
1√
2

> ·
1

2
0

 =
1√
2

a3 := a3 − r13q1 =

1
2
0

− 1√
2
·

 1√
2

0
1√
2

 =

 1
2

2
−1

2



For k = 2 and j = 3, we get:

r22 = ||a2||2 =
√

02 + 12 + 02 = 1

q2 =
1

r22
· a2 =

0
1
0


r23 = q>2 a3 =

0
1
0

> ·
1

2
0

 = 2

a3 := a3 − r23q2 =

 1
2

2
−1

2

− 2 ·

0
1
0

 =

 1
2

0
−1

2
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For k = 3, we get:

r33 = ||a3||2 =

√
1

4
+ 0 +

1

4
=

1√
2

q3 =
1

r33
· a3 =

1
1√
2

·

 1
2

0
−1

2

 =
√

2 ·

 1
2

0
−1

2

 =

 1√
2

0
− 1√

2



This leads to the 2 matrix Q and R:

Q =

 1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2

 and R =


√

2 2
√

2 1√
2

0 1 2
0 0 1√

2
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