Numerical Algorithms for Visual Computing IIT 2011
Example Solutions for Assignment 7

Problem 1 (The Splitting Validation)

In order to show that the Douglas-Rachford Splitting J35(u) := [J3R(2J5 —
I)+ (I — Jjg)]u is a valid splitting scheme, we have to show 0 € Jp(u) <
u=Jpr(w)
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& 0 € Jp(u)

Problem 2 (The Conjugate Convexification)
Our task is to find the convex conjugate function

fly) = sggyTx—f(fﬂ)-

1. f(z) = exp(x):

f(y) = supay —exp(z).
xzeD
For a supremum, the derivative of f* w.r.t. = should be zero, i.e.

(f)(z) = y — exp(x) = 0. From this it follows z = logy. Further-
more, (f*)"(z) = —exp(x) < 0, so this is indeed a supremum. By



plugging this result back into the definition of f*(y) and checking some
cases, we arrive at

log(y)y —y (y>0)
fy) = {0 (y=0)
00 (y <0)

fy) = supay— |z
zeD

Again, by deriving f* w.r.t. x, we arrive at the necessary condition for

a supremum: y — sgn(x) = 0. Plugging this back into f*, we arrive at

the following result:
0 (l<1)
[y) =
oo (lyl>1)

. 1
ffly) = Supxy—§:1:2-
x€eD

After deriving f* we arrive at (f*)'(z) =y —= = 0. Plugging this back
into f*, we get

4. f(x)=a'z—b=aTa—b:

[y) = supaTy—aTa+b
zeD

Deriving w.r.t. to x we arrive at (f*)'(x) = y—a = 0. Then the resulting
convex conjugate function is

Problem 3 (Musings on Bregman Distance)



1. For the non-negativity we make use of the proper convex function pro-
perty, i.e. f(z) =2-b— [ asin (13.9) . We consider
Br(p,q) = F(p)—F(g)—(p—q)-VF(q) =0
© pb=—f-qb+B—(p—q):0=0
& P9 b=(—-q -0,

which holds for any arbitrary b.

Another, more general method is to use a Taylor expansion for F(p)
around position g:

F(p)=F(q)+ (p—q)'VF(q) + %(p —q)"HF(q)(p — q) + O(¢*)

& F(p) = Flg) — (p—q) ' VF(q) = %(p —q)" HF(q)(p — q) + O(¢°)
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As we can see the left hand side of the equation is the Bregman distance
and on the right hand side, we have a second order term. We have
chosen F' to be convex for all p, ¢, therefore, the Hessian on the right
hand side is positive definite, i.e. the right hand side will become bigger
than zero for ¢ — 0.

2. We only show this for the 1-D case. In order to assure convexity of the
Bregman distance, we have to assure that the Hessian of the Bregman
distance function is positive semi-definite. One way to check this is
to consider the main minors of the Hessian. Let us now compute the
derivatives.

2BF(p,Q) = F'(p)— F'(q)

op

a 1!
a—qBF(p,Q) = —(p—q)F"(q)

82 /!

a—ﬁBF(p,q) = F"(p)

82 /!
apanF(p,q) = —F"(q)

82 11 /!
a—quF(p,q) = —(p—qF"(q) + F"(q)

A good way to check positive semi-definiteness with the main minors.
All determinants of the main minors have to be positive in order to
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assure positive semi-definiteness. The first minor F"”(p) should be po-
sitive. This means that the distance function is at least convex in the
first argument. However, the determinant for the second minor is given
by F”"(p)(F"(q) — (p — ) F"(q)) — (F"(q))?. Unfortunately, we cannot
state anything here now for ¢, so it may or may not be F' to be convex
in ¢. Hence, resulting in the statement described. Br(p, q) is convex in
its first argument, but not necessarily in its second.

Bram(p,q) = (Fi+ A E)(p) — (Fy + M) (q) — (p — ) V(FL + AF)(q)
(p—

Fi(p) + AFy(p) — Fi(q) — Ma(q) — (p — @)V Fi(q) —
= BFl(p7 Q) + ABFQ(]% Q)

Problem 4 (The Diverging Bregman)
At first, we consider the derivative of a function f(x) = zlogz—=z,i.e. f'(x) =

log . Applied on our given function, this gives VF(q) = (log q1,log qa, . . ., log g,) .

This gives us

Br(p,q) = F(p)—F(g)—(p—q)  VF(q9)

= Zpilogpi - Zpi - Z%‘ log ¢; + Z(h’ - Z(pi — qi) log q;
= sz'IOg% DRI

If we suppose now, that ) .p;, = > .¢; = 1, this results in the so-called
Kullback-Leibler divergence.

Brr(p,q sz log —

Problem 5 (The ROF Lagrangian)
In this exercise we want to compute a PDE for the Ruder-Osher-Fatemi
model. From the variational model

A
L vl + Sl 17 de dy
Q

From this, we get the Lagrangian

A
F(x,y,u,uz,uy) = ,/u%%—uz—l—g(u—ff
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For the Euler-Lagrange equation

F, — iFu — iFu
de ™ dy
with the ingredients
b, = gm 2
Uy + Uy
Uy

v 2 2
V Uz + g

we arrive at the PDE

Mu=f) - div (ngzn)

Obviously this PDE is not differentiable at positions where u, = u, = 0.
This problem is mostly being solved by artificially adding a small number

in the norm, i.e. ||Vul. := \/u2 +u2 + €2, resulting in

Mo — f) — div <||VV—5||5>




