
Numerical Algorithms for Visual Computing III 2011
Example Solutions for Assignment 7

Problem 1 (The Splitting Validation)
In order to show that the Douglas-Rachford Splitting JλDR(u) := [Jλ∂R(2Jλ∂S−
I) + (I − Jλ∂S)]u is a valid splitting scheme, we have to show 0 ∈ JF (u) ⇔
u = JλDR(u)

u = JλDR(u)

⇔ u = [Jλ∂R(2Jλ∂S − I) + (I − Jλ∂S)]u

⇔ u = 2Jλ∂RJ
λ
∂Su− Jλ∂Ru+ u− Jλ∂Su

⇔ u = 2(I + λ∂R)−1(I + λ∂S)−1u+ (I + λ∂R)−1u

+ u− (I + λ∂S)−1u

⇔ (I + λ∂R)(I + λ∂S)u = 2u− (I + λ∂S)u

+ (I + λ∂R)(I + λ∂S)u− (I + λ∂R)u

⇔ 0 = 2u− u− λ∂S − u− λ∂Ru
⇔ −u = −u− λSu− λRu
⇔ u = (I + λ (∂S + ∂R)︸ ︷︷ ︸

∂F

)u

⇔ u = (I + λ∂F )u

⇔ (I + λ∂F )−1u = u

⇔ u = Jλ∂F (u)

⇔ 0 ∈ JλF (u)

Problem 2 (The Conjugate Convexification)
Our task is to find the convex conjugate function

f ∗(y) = sup
x∈D

y>x− f(x).

1. f(x) = exp(x):

f ∗(y) = sup
x∈D

xy − exp(x).

For a supremum, the derivative of f ∗ w.r.t. x should be zero, i.e.

(f ∗)′(x) = y − exp(x)
!

= 0. From this it follows x = log y. Further-
more, (f ∗)′′(x) = − exp(x) < 0, so this is indeed a supremum. By
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plugging this result back into the definition of f ∗(y) and checking some
cases, we arrive at

f ∗(y) =


log(y)y − y (y > 0)

0 (y = 0)

∞ (y < 0)

2. f(x) = |x|:

f ∗(y) = sup
x∈D

xy − |x|.

Again, by deriving f ∗ w.r.t. x, we arrive at the necessary condition for

a supremum: y − sgn(x)
!

= 0. Plugging this back into f ∗, we arrive at
the following result:

f ∗(y) =

{
0 (|y| ≤ 1)

∞ (|y| > 1)

3. f(x) = 1
2
x2:

f ∗(y) = sup
x∈D

xy − 1

2
x2.

After deriving f ∗ we arrive at (f ∗)′(x) = y− x !
= 0. Plugging this back

into f ∗, we get

f ∗(y) =
1

2
y2.

4. f(x) = a>x− b = x>a− b:

f ∗(y) = sup
x∈D

x>y − x>a+ b.

Deriving w.r.t. to x we arrive at (f ∗)′(x) = y−a !
= 0. Then the resulting

convex conjugate function is

f ∗(y) =

{
b (y = a)

∞ (y 6= a)

Problem 3 (Musings on Bregman Distance)
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1. For the non-negativity we make use of the proper convex function pro-
perty, i.e. f(x) = x · b− β as in (13.9) . We consider

BF (p, q) = F (p)− F (q)− (p− q) · ∇F (q) ≥ 0

⇔ p · b− β − q · b+ β − (p− q) · b ≥ 0

⇔ (p− q) · b ≥ (p− q) · b,

which holds for any arbitrary b.

Another, more general method is to use a Taylor expansion for F (p)
around position q:

F (p) = F (q) + (p− q)>∇F (q) +
1

2
(p− q)>HF (q)(p− q) +O(q3)

⇔ F (p)− F (q)− (p− q)>∇F (q)︸ ︷︷ ︸
=BF (p,q)

=
1

2
(p− q)>HF (q)︸ ︷︷ ︸

≥0

(p− q) +O(q3)

As we can see the left hand side of the equation is the Bregman distance
and on the right hand side, we have a second order term. We have
chosen F to be convex for all p, q, therefore, the Hessian on the right
hand side is positive definite, i.e. the right hand side will become bigger
than zero for q → 0.

2. We only show this for the 1-D case. In order to assure convexity of the
Bregman distance, we have to assure that the Hessian of the Bregman
distance function is positive semi-definite. One way to check this is
to consider the main minors of the Hessian. Let us now compute the
derivatives.

∂

∂p
BF (p, q) = F ′(p)− F ′(q)

∂

∂q
BF (p, q) = −(p− q)F ′′(q)

∂2

∂p2
BF (p, q) = F ′′(p)

∂2

∂p∂q
BF (p, q) = −F ′′(q)

∂2

∂q2
BF (p, q) = −(p− q)F ′′′(q) + F ′′(q)

A good way to check positive semi-definiteness with the main minors.
All determinants of the main minors have to be positive in order to
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assure positive semi-definiteness. The first minor F ′′(p) should be po-
sitive. This means that the distance function is at least convex in the
first argument. However, the determinant for the second minor is given
by F ′′(p)(F ′′(q)− (p− q)F ′′′(q))− (F ′′(q))2. Unfortunately, we cannot
state anything here now for q, so it may or may not be F to be convex
in q. Hence, resulting in the statement described. BF (p, q) is convex in
its first argument, but not necessarily in its second.

3.

BF1+λF2(p, q) = (F1 + λF2)(p)− (F1 + λF2)(q)− (p− q)∇(F1 + λF2)(q)

= F1(p) + λF2(p)− F1(q)− λF2(q)− (p− q)∇F1(q)− (p− q)∇λF2(q)

= BF1(p, q) + λBF2(p, q)

Problem 4 (The Diverging Bregman)
At first, we consider the derivative of a function f(x) = x log x−x, i.e. f ′(x) =
log x. Applied on our given function, this gives∇F (q) = (log q1, log q2, . . . , log qn)>.
This gives us

BF (p, q) = F (p)− F (q)− (p− q) · ∇F (q)

=
∑
i

pi log pi −
∑
i

pi −
∑
i

qi log qi +
∑
i

qi −
∑
i

(pi − qi) log qi

=
∑

pi log
pi
qi
−
∑
i

pi +
∑
i

qi.

If we suppose now, that
∑

i pi =
∑

i qi = 1, this results in the so-called
Kullback-Leibler divergence.

BKL(p, q) =
∑

pi log
pi
qi
.

Problem 5 (The ROF Lagrangian)
In this exercise we want to compute a PDE for the Ruder-Osher-Fatemi
model. From the variational model∫

Ω

‖∇u‖+
λ

2
‖u− f‖2 dx dy

From this, we get the Lagrangian

F (x, y, u, ux, uy) =
√
u2
x + u2

y +
λ

2
(u− f)2
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For the Euler-Lagrange equation

Fu −
d

dx
Fux −

d

dy
Fuy

with the ingredients

Fu = λ(u− f)

Fux =
ux√
u2
x + u2

y

Fuy =
uy√
u2
x + u2

y

we arrive at the PDE

λ(u− f)− div

(
∇u
‖∇u‖

)
Obviously this PDE is not differentiable at positions where ux = uy = 0.
This problem is mostly being solved by artificially adding a small number ε
in the norm, i.e. ‖∇u‖ε :=

√
u2
x + u2

y + ε2, resulting in

λ(u− f)− div

(
∇u
‖∇u‖ε

)
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