
Numerical Algorithms for Visual Computing III 2011
Example Solutions for Assignment 6

Problem 1 (Programming of First Order)

1. The linear program is given by






10x1 + 7x2 → min
20x1 + 20x2 ≥ 60
15x1 + 3x2 ≥ 15
5x1 + 10x2 ≥ 20
x1 ≥ 0
x2 ≥ 0

2. The graphical solution is as follows:
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At first, one formulates the linear constraints in terms of a linear functi-
on and draws this line into the graph (blue lines). The gray area denotes
the area of admissible solutions. The black lines result for different re-
sulting values of the minimisation condition f(x, y) = 10x + 7y. Each
crossing with the cone can be considered as a candidate. The correct
minimum can be found for f(0.5, 2.5) = 22.5. However, one may also
argue that wafers should be intact for manifacturing, so we only consi-
der integer values for x and y. For f(1, 2) = 24 we have found the best
solution.

3. In general a linear optimisation problem can be considered with






minimize c1x1 + . . .+ cnxn = ~c⊤~x

such that A~x ≤ b

~x ≥ 0
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In this notation, we have

n∑

j=1

aijxj ≤ bi

for all i = 1, . . . , n. By introducing helper variables xn+1, . . . , x2n, we
can rewrite this as

n∑

j=1

aijxj + xn+i = bi,

resulting in the alternate version of the program







minimise c1x1 + . . .+ cnxn = ~c⊤~x

such that A∗~x∗ = b

~x∗ ≥ 0

Then the dual formulation is given as







maximise ~b⊤~y

such that A⊤~y ≤ c

~x∗ ≥ 0

It is then simple to show weak duality c⊤x ≥ b⊤y by

c⊤x = x⊤c ≥ x⊤(A⊤y) = x⊤A⊤y = (Ax)⊤y = b⊤y

Duality gap is also possible, for example if a problem has an unbounded
solution and its dual an infeasible solution (or vice versa).

Problem 2 (Hanging out with Joseph Louis) The problem formulation
is given by







minimise f(x1, x2) = −1

2

√
x1 − 1

2
x2

such that x1 ≥ 0.1
x2 ≥ 0
x1 + x2 ≤ 1

Then the Lagrangian is given as

L := −1

2

√
x1 −

1

2
x2 + µ1(0.1− x1) + µ2(−x2) + µ3(x1 + x2 − 1)
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satisfying the minimisation formulation







minimise f(x)
such that gi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, j = 1, . . . , p

With the settings

∇f(x) =

( − 1

4
√
x1

−1

2

)

, ∇g1(x) =

(
−1
0

)

,

∇g2(x) =

(
0
−1

)

, ∇g3(x) =

(
1
1

)

we can derive the KKT conditions for this problem with







( − 1

4
√
x1

−1

2

)

+ µ1

(
−1
0

)

+ µ2

(
0
−1

)

+ µ3

(
1
1

)

= 0

µ1(0.1− x1) = 0
µ2(−x2) = 0
µ3(x1 + x2 − 1) = 0
µ1 ≥ 0
µ2 ≥ 0
µ3 ≥ 0
0.1− x1 ≤ 0
−x2 ≤ 0
x1 + x2 − 1 ≤ 0

With careful plugging in and calculations, one can compute a non-trivial
solution for µ1 = 0, µ2 = 0, µ3 =

1

2
, x1 =

1

4
, x2 =

3

4
.

Problem 3 (Getting a fix)
Recall Banach’s fixed point theorem: Let X ⊆ R

N be a non-empty and closed
set and P : X → X a self-contracting mapping onto itself, i.e. there exists a
constant α ∈ (0, 1) with

‖P (x)− P (y)‖ ≤ α‖x− y‖

for all x, y ∈ X . Then P has exactly one fixed point x∗ in X . Furthermore,
with the iterative algorithm xk+1 := P (xk), k = 0, 1, . . . , and x∗ ∈ X , each
arbitrary sequence {xk} converges against x∗.
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As the iterative algorithm is given as P (xj) := λj+1(xj) = λj + rjh(xj), we
can compute

‖P (xj)− P (yj)‖2 = ‖λj + rjh(xj)− λj − rjh(yj)‖2

= ‖rjh(xj)− rjh(yj)‖2

= |rj|‖ h(xj)
︸ ︷︷ ︸

=0

−h(yj)
︸ ︷︷ ︸

=0

‖

≤ |rj|‖xj − yj‖2 = crj−1‖xj − yj‖2

and as 0 ≤ rj ≤ 1, all conditions for Banach are fulfilled.

Problem 4 (Operation KKT)

1. The KKT conditions for the given problem can be given with the help
of the derivatives

∇f(x) =





3x2
1

3x2
2

3x2
3



 , ∇g(x) =





2x1

2x2

3



 , ∇h(x) =





1
1
1



 (1)

as










3x2
1

3x2
2

3x2
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+ µ





2x1

2x2

3



+ λ





1
1
1





µ(x2
1 + x2

2 + 3x3 +
5

2
)

µ ≥ 0
x1 + x2 + x3 + 2 = 0
x2
1 + x2

2 + 3x3 +
5

2
≤ 0

(2)

2. The Lagrangian is given by

L(x, µ, λ) = f(x) + µg(x) + λh(x) (3)

= x3

1 + x3

2 + x3

3 + µ(x2

1 + x2

2 + 3x3 +
5

2
) + λ(x1 + x2 + x3 + 2)

and the corresponding dual function therefore is

Θ(~µ,~λ) = inf
x
x3

1 + x3

2 + x3

3 + µ(x2

1 + x2

2 + 3x3 +
5

2
) + λ(x1 + x2 + x3 + 2).
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3. A simple look at the original function f(x) = x3
1 + x3

2 + x3
3 shows

immediately, that the function itself that should be minimized is not
convex, hence Theorem 12.2 does not apply here. Furthermore, if one
looks at definition of the duality gap, one can determine both sides of
the difference. The right hand side max{Θ(~µ,~λ) | µi(x) ≥ 0 ∀i, j} can
be evaluated internally (or at least the dual function that is computed)
by means of methods such as Newton’s method. An application reveals
as a minimum x1 = −0.5, x2 = −0.5, x3 = −1. However, an optimal
value for µ = −0.5625 is negative and clearly violates the conditions.
However, plugged into the function f(x) a minimum would be found
with f(x) = −10

8
. However, considering now also the left hand side

of the duality gap formulation, i.e. min{f(x) | gi(x) ≤ 0, hj(x) =
0 ∀i, j}, we can have a look at the conditions in it first. For example,
the condition x2

1 + x2
2 + 3x3 ≤ −5

2
leads to the conclusion, that in order

to fulfill this condition, x1 and x2 should be close to zero, such that
x3 ≤ −5

6
. The second condition x1 + x2 + x3 + 2 = 0 however shows

that for a suggested x1 = x2 = 0, x3 = −2, which works according
to the previous statement. However, inserted into the initial function
gives f(x) = −8, in contrast to the other result. It should be noted,
that one can repeat this exercise with the program

minimize x2

1 + x2

2 + x2

3 (4)

subject to

x2

1 + x2

2 + 3x3 ≤ −5

2
and (5)

x1 + x2 + x3 = −2 (6)

as a further exercise on that problem.
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