
Numerical Algorithms for Visual Computing III 2011
Example Solutions for Assignment 4

Problem 1 (Comparison of Gradient Domain methods)

(a) The gradient vector ∇Ef (u) is

∂Ef (u)

∂u1

= (u1 − f1)− αu2 − u1

∆x2
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∂Ef (u)
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and the Hessian HEf (u) is given by
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(b) A naive way to implement a stopping criterion is to check ‖u(k+1) −
u(k)‖2 < ε or ‖f(x(k)) − p∗‖ < ε for a fixed point p∗. This may be
a good choice, however it may happen, that the algorithm stays in a
local minimum. However, a good choice for a stopping criterion for this
part of the exercise, as well as the next, would be to use the criterion
‖∇Ef (uk+1)−∇Ef (uk)‖2 < ε. With this choice, the algorithm stops at
that time, if the gradient direction does no longer change. However it is
also possible to check ‖∇Ef (uk+1)‖2 < ε, i.e. if the gradient direction
is the zero vector. As the Hessian of the problem has only positive
eigenvalues (not shown here), we can say that the function is convex
and thus, the found minimum is also the local and global minimum.

(c) The Newton method finds also the global minimum but with less iter-
ations compared to the GDLS algorithm. This is due to the fact that
the use of the inverted Hessian in the search direction does employ a
gradient descent direction in the Hessian norm

‖u‖Hf(x) = (u>Hf(x)u)
1
2 . (6)

1



As the Hessian matrix is constant for a fixed α, the Hessian directly
helps finding a descent direction to the minimum.

Problem 2 (Playing with the banana) The Rosenbrock function is a
polynomial of 4th degree and has a global minimum in x = (1, 1)>. It is
a non-convex function where the minimum lies in a banana-like, parabolic-
shaped valley along the parabola x2 = x2

1. The other test function is also
a polynomial of 4th degree with a global minimum at (2, 1)>. The problem
that occurs with this function is that the Hessian is singular at this minimum,
which may lead to some problems for algorithms that depend on positiv def-
inite Hessians. In the following, we will always employ the stopping criterion
‖∇f‖ < 0.000001. For comparison, the gradients are

∇fBanana =

(
−2(1− x)− 400x ∗ (y − x2)

200y − 200x2

)
(7)

∇fB−S =

(
4(x− 2)3 + 2x− 4y

−4x+ 8y

)
(8)

and the Hessians

HfBanana =

(
2 + 1200x2 − 400y −400x

−400x 200

)
(9)

HfB−S =

(
12(x− 2)2 + 2 −4

−4 8

)
(10)

1. For the Banana function, the Newton scheme converges after 6 it-
erations to the correct value (1, 1)>. For the Bazaraa-Shetty func-
tion however, the scheme converges after 13 iterations to a value of
(1.9835577, 0.99117788)>, which is close, but still relatively far away
from the correct solution, due to the singular Hessian for the mini-
mum.

2. For the Banana function, a choice of α = 0.01 and β = 0.25 leads to the
approximated solution (1.0000586, 1.0001175)> after 150 iterations. In
this exercise, the choice of α and β (of the line search algorithm) can
be substantial here, as it may lead to divisions by zero. Therefore, one
should also make sure that d>q should be bigger than zero. For exam-
ple, for α = 0.1, β = 0.3 the algorithm converges with 9430 iterations.
The same settings however let the algorithm converge for a result of
the Bazaara-Shetty function to a result (2.0259357, 1.0129725)> after
430 iterations. With a setting of α = 0.3 and β = 0.11 it converges
after 8 iterations to (1.9733595, 0.9866750)>.
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3. Now the trust region method should be used for cases, in which indef-
inite or singular Hessians perturb the outcome of the algorithm. The
idea of the trust region method is to shift the eigenvalues into a pos-
itive range. There are several possible ideas how to do that, we will
show two. A first method is to compute all eigenvalues of a matrix and
determine the minimal eigenvalue. In case this one lies in the negative
range, the α should be chosen in such a way, that λmin + α > 0, for
example by choice of |λmin| + 1. Another idea which does not need to
compute the eigenvalues directly depends on a diagonally dominance.
By Gerschgorin’s Theorem, a strictly diagonally dominant matrix has
only positive eigenvalues. In that sense, one has to find the row that
“violates” the diagonally dominance the most and add an α in such a
way that the Hessian is again diagonally dominant. In this case, we
employ a standard Newton method as a basis iteration scheme. For
the starting point (−1.2, 1), the scheme converges after 6 iterations,
which we have already seen in part (a). The reason for that is, from
this point on, the Hessian is always positive definite. If one chooses
e.g. as a starting point (−1.2, 2)>, the first Hessian contains negative
eigenvalues, thus the Trust Region method can be used here. For the
Bazaraa function, one can see that every point on the line (2, y)> gives
a singular matrix. Applied on such a point (e.g. (2, 0)>) converges
after 8 iterations with (1.9787172, 0.9893586)> as a result.

Problem 3 (Descending Into The Abyss)

(a) Given the fact, that f ′(x) = 2x, a gradient descend scheme looks as
follows:

x(k+1) = x(k) − 2 · x(k) = −x(k) (11)

and for the next iteration

x(k+2) = x(k+1) − 2 · x(k+1) = −x(k+1) = x(k). (12)

In this case, the gradient descent algorithm ends up in an infinite loop,
in which the current search positions are landing directly opposite.

(b) The first derivative of the function is f ′(x) = 4x3 + 9x2 − 6x − 7 and
f ′′(x) = 12x2 +18x−6. A curve sketching shows that local extrema are

1 and−13
8
±
√

57
8

. However, the function has 2 minima and 1 maxima, i.e.
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it is not a convex function. The global minimum however is located
at −13

8
−
√

57
8

Remember, that the Newton method for optimisation
problems is a variant of the Newton method to find zero crossings,
which is what is happening here. Extrema are zerocrossings of the
first derivative, so the Newton method will find a zero crossing for
a given starting point. However the choice of a starting point also
determines in which extrema the result will end up with, so for example
if the algorithm starts at x = 5, the Newton method will find the local
minimum at position 1, also if you start with x = 0, then one ends up
in the local maximum at −13

8
−
√

57
8

.

(c) The first derivative of f(x) is f ′(x) = 1
x
− a and f ′′(x) = − 1

x2
, i.e. the

function does not have a minimum but a maximum and is concave.
The Newton method is given by

x(k+1) = x(k) −
1
x(k)
− a

− 1
(x(k))2

= 2x(k) − a(x(k))2. (13)

The result (i.e. the global minimum) of this algorithm is 1
a
, so this is

actually a neat way to program an iterative algorithm for reciprocal
values without any use of divisions.

However, this problem is not defined on R but on R+, so it may happen,
that one search direction lands in an area where the original function
is not defined. In case, one search direction would lead to a negative
value, then the eventual result would be −∞. So you have to choose
your starting point relatively close to the desired result.

(d) Remember that the original Newton method tries to find zero crossings
of a given function. Only when considering the first and the second
derivative, the Newton method tries to find a minimum of a function. In
this case, we analyse the simple method for g(x) := f ′(x) = arctan(x).
One can see that for starting values below a value x ≈ 1.39 the method
converges to the desired point. If a value above 1.39 is chosen, then
the algorithm diverges. Also, it is possible to let the algorithm run in
an infinite loop if some value ≈ 1.39 is chosen.

Problem 4 (Watch your step)
We have implemented the Armijo conditions by means of the Gradient De-
scent Line Search Algorithm for exercise 1. It is possible to reduce the number
of iterations for large α values. However one must give several new parame-
ters in advance. For example, with α = 0.1 (as in the second exercise) and
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β1 = 0.002 and β2 = 0.5 it is possible to find a solution after 205 iterations,
instead of 9430 iterations. (In the actual implementation, the choice of find-
ing a suitable β ∈ [β1σ, β2σ] was realised by taking a linear combination
αβ1σ + (1− α)β2σ with a given parameter λ).
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