
Numerical Algorithms for Visual Computing III 2011
Example Solutions for Assignment 3

Problem 1 (Slow starters)

1. The function f(x, y, z) = 2x2 + 3y2 + z2 has the gradient ∇f(x, y, z) =
(4x, 6y, 2z)>. Evaluated at point (x, y, z)> = (2, 1, 3)>, we have∇f((2, 1, 3)>) =
(8, 6,−6)>. Computing the directional derivative∇vf in direction v =
(1, 0,−2)> gives the following result:

(1, 0,−2) · (8, 6,−6)> = −4.

At this point, we should note, that it is mathematically more sound to
only consider v as a normalised vector, i.e. v>∇f = −4√

5
.

2. The function f(x, y) = exp(x) cos(x) has the gradient ∇f(x, y) =
(exp(x) cos(y),− exp(x) sin(y))>. Evaluated at point (x, y)> = (2, π)>,
we have ∇f((2, π)>) = (− exp(2), 0)>. Computing the directional
derivative∇vf in the normalised direction v = (2, 3)> gives the fol-
lowing result:

1√
13

(2, 3) · (− exp(2), 0)> =
−2 exp(2)√

13
.

Problem 2 (Germany’s Next Top Stencil)

a) The given energy functional has the Euler-Lagrange equation

d

dx
u′(x) = u′′(x)

!
= 0.

b) A function that satisfies this constraints is given by a simple linear
equation ax+b. Given the boundary conditions u(1) = 10 and u(11) =
20, f(x) = x+ 9 satisfies these constraints.

c) At first, as a reference, let us discretise the Euler-Lagrange equation
with mixing forward-backward discretisation for the different deriva-
tives:

d

dx
u′
∣∣∣∣
x=j

≈
[u′]|x=j+1 − [u′]|x=j

∆x
≈
(uj+1−uj

∆x

)
−
(uj−uj−1

∆x

)
∆x

=
uj+1 − 2uj + uj−1

(∆x)2

1

This is the standard way to compute an approximation for the second
derivative with a second order error term. Implementing this method
as an iterative scheme, i.e.

uk+1
j = ukj + τ

ukj+1 − 2ukj + ukj−1

(∆x)2

gives the desired result as proposed in part (b). This was just for a
reference. Let us now go ahead with the implementation with only
forward derivatives:

d

dx
u′
∣∣∣∣
x=j

≈
[u′]|x=j+1 − [u′]|x=j

∆x
≈
(uj+2−uj+1

∆x

)
−
(uj+1−uj

∆x

)
∆x

=
uj+2 − 2uj+1 + uj

(∆x)2

Implemented as an iterative scheme this algorithm results in

uk+1
j = ukj + τ

ukj+2 − 2ukj+1 + ukj
(∆x)2

.

The problem with this scheme is given by the fact that the left boundary
condition is not used at all and an additional boundary condition u(12)
is needed. If one chooses for example u(12) = 20, then the signal is
becoming (10, 20, 20, . . . , 20), i.e. it interpolates a straight line between
points u(11) and u(12). Similarly this phenomenon appears with a
derivation with only backward derivatives, i.e.

d

dx
u′
∣∣∣∣
x=j

≈
[u′]|x=j − [u′]|x=j−1

∆x
≈
(uj−uj−1

∆x

)
−
(uj−1−uj−2

∆x

)
∆x

=
uj − 2uj−1 + uj−2

(∆x)2

resulting in the iterative scheme

uk+1
j = ukj + τ

ukj − 2ukj−1 + ukj−2

(∆x)2
.

With this implementation we have to introduce an additional bound-
ary condition at u(0). Coming to the last candidate, i.e. the central
difference scheme, we have an additional problem: With the derivation

d

dx
u′
∣∣∣∣
x=j

≈
[u′]|x=j+1 − [u′]|x=j−1

2∆x
≈
(uj+2−uj

2∆x

)
−
(uj−uj−2

2∆x

)
∆x

=
uj+2 − 2uj + uj−2

(4∆x)2

and the resulting iterative scheme

uk+1
j = ukj + τ

ukj+2 − 2ukj + ukj−2

(4∆x)2
,

2

we see that the signal is split in two signals actually that are not commu-
nicating with each other. Also we need here four boundary conditions
defined at u(0), u(1), u(11), u(12). With a bad choice of boundary con-
ditions it is possible to have two straight lines that are interchanging
between even and odd signal parts.

Problem 3 (Tortellini and Ambrosia Revisited) For the 1-D AT energy
functional we use the discretisation scheme from the last assignment sheet
and implement this with Neumann boundary conditions. In order to have
no problems with the iterative scheme, one should use a small time step size.
u is being initialised with the original signal and v with a simple signal with
only 1s.

Problem 4 (Rationalising with Gold) This method is also known as
the “golden section method”. It is a variant of a bisection method. Let
f : [a, b]→ R be a unimodal function with a minimum ξ and a < x1 < x2 < b.
As we assume f to be monotonous we can imply

f(x1) ≥ f(x2) ⇒ ξ ∈ [x1, b] (1)

f(x1) < f(x2) ⇒ ξ ∈ [a, x2] (2)

The idea is that in such a case, one can use a smaller interval [a1, b1] ⊂ [a, b]
with [a0, b0] := [a, b] and we can set

[a1, b1] :=

{
[x1, b] if f(x1) ≥ f(x2)

[a, x2] if f(x1) < f(x2)
(3)

Together with the conditions described in the exercise parts (a) and (b), we
can compute an optimal value for τ . Assume that we have a minimum in the
interval [x1, b]. By the condition bi − ai = τ(bi−1 − ai−1) we know that the
interval [x1, b] has the size τ(b−a) and therefore [a, x1] has size (1−τ)(b−a).
From the settings, one can check that in the next step, the old xi−1

2 becomes
the new xi1, which means that the interval [xi−1

1 , xi−1
2] is of size τ(1−τ)(b−1)

and [xi−1
2 , bi−1] = τ 2(b− a). As we know that the length of [a, x1] is equal to

the length of [x2, b], we are dealing with an equation 1 − τ = τ 2. This is a

quadratic equation and has the solutions ±
√

5−1
2

. As one of the solutions is

negative (and therefore useless), the optimal solution is τ =
√

5−1
2

, which is
also known as “golden section”.

From this knowledge we can devise an algorithm, which is known as the

3

so-called “golden section method”. Initially we have the following settings:

τ =

√
5− 1

2
x1 = b0 − τ(b0 − a0)

x2 = a0 − τ(b0 − a0)

f 0
a = f(a0)

f 0
b = f(b0)

f 0
1 = f(x0

1)

f 0
2 = f(x0

2)

Set k = 0.

while bk − ak > ε
if fk

1 ≥ fk
2

ak+1 = xk1
bk+1 = bk

xk+1
1 = xk2
xk+1

2 = ak+1 + τ(bk+1 − ak+1)
fk+1
a = fk

1

fk+1
b = fk

b

fk+1
1 = fk

2

fk+1
2 = f(xk+1

2)
else

ak+1 = ak

bk+1 = xk2
xk+1

2 = xk1
xk+1

1 = bk+1 − τ(bk+1 − ak+1)
fk+1
a = fk

a

fk+1
b = fk

2

fk+1
1 = fk

1

fk+1
2 = f(xk+1

1)
end

k = k + 1
end

For example, by choosing as a starting interval [−4, 0], the golden section
method needs 32 iterations for the result −2.5687298.

4

