
Numerical Algorithms for Visual Computing III 2011
Example Solutions for Assignment 2

Problem 1 (Tortellini and Ambrosia)

1. We begin our analysis by considering the Lagrangian of the Functional

ETA(u, v) =

∫ b

a

β (u− f)2 + v2 (u′)
2

+ α

(
γ (v′)

2
+

(1− v)2

4γ

)
dx

which is given as

F (x, u, v, ux, vx) = β (u− f)2 + v2 (u′)
2

+ α

(
γ (v′)

2
+

(1− v)2

4γ

)

The Euler-Lagrange equation for this energy functional is given as

0
!

= Fu −
d

dx
Fu′

0
!

= Fv −
d

dx
Fv′

with the ingredients

Fu = 2β(u− f)

Fv = 2v(u′)2 − 2α

4γ
(1− v)

Fu′ = 2u′v2

Fv′ = 2αγv′

resulting in

0
!

= β(u− f)− d

dx
u′v2

0
!

= v(u′)2 − α

4γ
(1− v)− d

dx
αγv′

2. With w := (u, v)> we can compute

∇wETA(w) =

(
Fu − d

dx
Fu′

Fv − d
dx
Fv′

)
=

(
β(u− f)− d

dx
u′v2

v(u′)2 − α
4γ

(1− v)− d
dx
αγv′

)
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3. We need to find out whether the function is convex or not. Consider the
second part of the above computed Euler-Lagrange equation, neglecting
d

dx
2αγv′ = 2αγv′′. With this, we can compute a function v(|ux|2) that

is depending solely on the first derivative of u, hence, simplifying the
Euler-Lagrange equation. This idea is taken from the analysis by Chan
and Vese of the Ambrosio-Tortorelli algorithm. Therefore, the modified
second equation becomes:

v(u′)2 − α
4γ

(1− v) = 0

⇔ v(u′)2 − α
4γ

+ αv
4γ

= 0

⇔ v((u′)2 + α
4γ

) =
α

4γ

⇔ v =
α

α + 4γ(u′)2

We can then plug this result into the initial energy functional (neglect-
ing the v′ term):

ETA(u, v) =

∫ b

a

β (u− f)2 + v2 (u′)
2

+ α
(1− v)2

4γ
dx

=

∫ b

a

β (u− f)2 +

(
α

α + 4γ(u′)2

)2

(u′)
2

+
α

4γ

(
4γ(u′)2

α + 4γ(u′)2

)2

dx

=

∫ b

a

β (u− f)2 +
α(u′)2

α + 4γ(u′)2
dx

If we consider the arising regulariser we can see that this function is
non-convex, i.e. this function does not have a unique minimiser.

4. At that point, we have several issues to discuss. The first question is the
question how to choose appropriate boundary conditions and the second
is how we discretise in the first place. In order to achieve a second order
derivative as given in the problem description, we should discretise
such that the second derivative arises. This is done for example by
considering forward derivatives for

u′|x=xj
≈ uj+1 − uj

∆x

and backward derivatives for

d

dx

∣∣∣∣
x=xj

≈
[. . .]|x=xj

− [. . .]|x=xj−1

∆x
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We now discretise for j = 1, . . . , N the first Euler-Lagrange equation
(also u0 and uN+1 are boundary values that we will discuss later):[
β(u− f)− d

dx
u′v2

]∣∣∣∣
x=xj

= β(uj − fj)−
[u′v2]|x=xj

− [u′v2]|x=xj−1

∆x

= β(uj − fj)−
(ui+1−ui

∆x

)
v2
j −

(ui−ui−1

∆x

)
v2
j−1

∆x

= β(uj − fj)−
(
ui+1 − ui

∆x2

)
v2
j +

(
ui − ui−1

∆x2

)
v2
j−1

If we consider now Neumann boundary conditions for this equation,
we have to consider ghost pixels uN+1 := uN and u0 := u1, as well as
vN+1 := vN and v0 := v1. This leads to

for u1 : β(u1 − f1)−
(
u2 − u1

∆x2

)
v2

1

for uN : β(uN − fN) +

(
uN − uN−1

∆x2

)
v2
N−1

Let us now come to the second equation, which we will discretise with
the same setup:[

v(u′)2 − α

4γ
(1− v)− d

dx
αγv′

]∣∣∣∣
x=xj

= vj

(
uj+1 − uj

∆x

)2

− α

4γ
(1− vj)− αγ

[v′]|x=xj
− [v′]|x=xj−1

∆x

= vj

(
uj+1 − uj

∆x

)2

− α

4γ
(1− vj)− αγ

vj+1−vj
∆x

− vj−vj−1

∆x

∆x

= vj

(
uj+1 − uj

∆x

)2

− α

4γ
(1− vj)− αγ

vj+1 − 2vj + vj−1

∆x2

Again, with the Neumann boundary conditions, we also have

for v1 : vj

(
u2 − u1

∆x

)2

− α

4γ
(1− v1)− αγv2 − v1

∆x2

for vN : − α

4γ
(1− vN)− αγvN−1 − vN

∆x2
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5. An iterative scheme is then given by the explicit iteration scheme

uk+1
j = ukj + ∆t

(
β(ukj − fj)−

(
uki+1 − uki

∆x2

)
(vkj )2 +

(
uki − uki−1

∆x2

)
(vkj−1)2

)

vk+1
j = vkj + ∆t

vj (ukj+1 − ukj
∆x

)2

− α

4γ
(1− vkj )− αγ

vkj+1 − 2vkj + vkj−1

∆x2

 .

Notice that the iterative scheme for the pixels at the boundaries needs
to be taken care of in the implementation.

6. Let us discretise the energy functional:

E∆TA(u, v) = ∆x
N∑
j=1

(
β (uj − fj)2 + v2

j (u′)
2
∣∣∣
x=xj

+ α

(
γ (v′)

2
∣∣∣
x=xj

+
(1− vj)2

4γ

))

Now we need to discretise the derivatives. Our choice will be to use
forward derivatives:

≈ ∆x
N∑
j=1

(
β (uj − fj)2 + v2

j

(
uj+1 − uj

∆x

)2

+ α

(
γ

(
vj+1 − vj

∆x

)2

+
(1− vj)2

4γ

))

For computing a unique minimiser, we consider the derivatives ∂E∆TA

∂uj

and ∂E∆TA

∂vj
for all j. As before, we consider Neumann boundary condi-

tions, which result in special conditions:

∂E∆TA

∂u1

= 2∆xβ(u1 − f1)− 2∆x
2v2

1

∆x2
(u2 − u1)

∂E∆TA

∂uj
= 2∆xβ(uj − fj)− 2∆x

2v2
j

∆x2
(uj+1 − uj) + 2∆x

2v2
j−1

∆x2
(uj − uj−1)

for j = 2, . . . , N − 1

∂E∆TA

∂uN
= 2∆xβ(uN − fN) + 2∆x

2v2
N−1

∆x2
(uN − uN−1)
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Also we have to derive w.r.t. the v-components:

∂E∆TA

∂v1

= 2∆xv1

(
u2 − u1

∆x

)2

−∆x
2αγ

∆x2
(v2 − v1)−∆x

2α

4γ
(1− v1)

∂E∆TA

∂vj
= 2∆xvj

(
uj+1 − uj

∆x

)2

−∆x
2αγ

∆x2
(vj+1 − vj)

+∆x
2αγ

∆x2
(vj − vj−1)−∆x

2α

4γ
(1− vj)

= 2∆xvj

(
uj+1 − uj

∆x

)2

−∆x
2α

4γ
(1− vj)−∆x

2αγ

∆x2
(vj+1 − vj + vj−1)

∂E∆TA

∂vN
= ∆x

2αγ

∆x2
(vN − vN−1)−∆x

2α

4γ
(1− vN)

Notice that all computed derivates should be equal to zero for a min-
imiser, i.e. the term ∆x cancels out everywhere.

7. An iterative scheme is then given by

uk+1
j = ukj + ∆t

(
β(ukj − fj)−

(
uki+1 − uki

∆x2

)
(vkj )2 +

(
uki − uki−1

∆x2

)
(vkj−1)2

)

vk+1
j = vkj + ∆t

vj (ukj+1 − ukj
∆x

)2

− α

4γ
(1− vkj )− αγ

vkj+1 − 2vkj + vkj−1

∆x2

 .

Notice that this is the same iterative scheme as above, however this
might change if other discretisations for the derivatives have been cho-
sen.

Problem 2 (The Problem of Nail and GrandsonmanTM)

1. We want to minimise the following functional:

E2(u, v) =

∫
Ω

((fxu+ fyv + ft)
2

+α(∇u>D(∇f)∇u+∇v>D(∇f)∇v)) dx dy

This is an Optic Flow model with an anisotropic image-driven regu-
lariser as proposed by Nagel in 1983. The Lagrangian of this functional
is given by

G(x, y, u, v,∇u,∇v) = ((fxu+ fyv + ft)
2

+α(∇u>D(∇f)∇u+∇v>D(∇f)∇v)
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A minimiser of the sought functional satisfies necessarily the Euler-
Lagrange equations

Gu − ∂xGux − ∂yGuy = 0

Gv − ∂xGvx − ∂yGvy = 0

Let us now compute the missing components of the E-L equations:

Gu = 2(fxu+ fyv + ft)fx

Gv = 2(fxu+ fyv + ft)fy

Gux = α(e>1 D(∇f)∇u+∇u>D(∇f)e1) = 2α(e>1 D(∇f)∇u)

Guy = α(e>2 D(∇f)∇u+∇u>D(∇f)e2) = 2α(e>2 D(∇f)∇u)

Gvx = α(e>1 D(∇f)∇v +∇v>D(∇f)e1) = 2α(e>1 D(∇f)∇v)

Gvy = α(e>2 D(∇f)∇v +∇v>D(∇f)e2) = 2α(e>2 D(∇f)∇v)

It should be noted that the terms e>i D(∇f)∇uj and ∇u>j D(∇f)ei are
equal, as the result of this multiplication gives a scalar value eventually.
Combining all entries, gives us the sought Euler-Lagrange equations

2(fxu+ fyv + ft)fx − ∂x2α(e>1 D(∇f)∇u)− ∂y2α(e>2 D(∇f)∇u) = 0

2(fxu+ fyv + ft)fy − ∂x2α(e>1 D(∇f)∇v)− ∂y2α(e>2 D(∇f)∇v) = 0

By employing the following rule for the divergence operator

div (A) =
∑
i

∂xi(e
>
i A),

we can simplify the Euler-Lagrange equation to

div (D(∇f)∇u)− 1

α
(fxu+ fyv + ft)fx = 0

div (D(∇f)∇v)− 1

α
(fxu+ fyv + ft)fy = 0

2. You can see, if you set D(∇f) = I, that the regulariser becomes
that of the Horn and Schunck method, i.e. this is a special case for
this kind of regulariser. This can be seen from the regulariser it-
self by applying ∇u>D(∇f)u = u>Iu = u>u = |∇u|2 = u2

x + u2
y.

Also, the Euler-Lagrange equation boils down to the same equation, as
div (D(∇f)∇u) = div (I∇u) = div (∇u) = ∆u
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