
Numerical Algorithms for Visual Computing III 2011
Example Solutions for Assignment 1

Problem 1 (Germany’s Next Curve Model)

1. Similar to the example in the lecture, we can compute
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2. At first, the Lagrangian is given as

F (x, u(x), u′(x)) = (u′(x))2

Then, we can compute the Euler-Lagrange equation

Fu −
d

dx
Fu′ = 0

with

Fu = 0

Fu′ = u′(x)

d

dx
Fu′ = u′′(x)

resulting in the Euler-Lagrange equation

u′′(x) = 0.

This is also called the Laplace equation, which is the steady-state so-
lution of the 1-D heat equation

ut = uxx

Problem 2 (Optimal Prime)
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1. General approach: Recall from the lectures of Mathematics for Com-
puter Scientists that a function in several variables is convex if and only
if its Hessian matrix is positive semidefinite. Given the Lagrangian in
the form

F (x, λ, η) = λ
√

1 + η2

Then the Hessian is given as
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One method to discover positive definiteness of a matrix is to consider
the quadratic form of a matrix, by considering

( x1 x2 )HF
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≥ 0.

After some calculations, we see that

x21

(
λ√

1 + η2
− λη

(1 + η2)
3
2

)
+ 2x1x2

(
λη√
1 + η2

)
.

Obviously, if λ < 0, then the result is no longer positive. Furthermore
it is very difficult to determine if the remaining terms can compensate
this. Now if we consider the alternate definition, this simplifies the
convexity property drastically. The integrand function is now

F (λ, η) = λ
√

1 + η2.

If we fix η, i.e. we are setting this variable to a constant value, then
this function is convex for all λ ≥ 0. If λ > 0 fixed, then η is strictly
convex. For this example, the alternative theorem is more simple.

2. For this simple case the Euler-Lagrange equation also simplifies, which
results in

d

dx
[F (u(x), u′(x))− u′(x)Fη(u(x), u′(x)))] = 0.

With

Fη =
λη√
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the resulting Euler-Lagrange equation is as follows:

d

dx
[λ
√

1 + η2 − η λη√
1 + η2

] = 0.

Integrating over the domain gives us then

λ
√

1 + η2 − η λη√
1 + η2

= c.

Problem 3 (Condition Zero) Let us first consider the Euler-Lagrange
equation of the given energy functional. The Lagrangian is given as

F (x, λ, η) = η2 + (λ− 2)2.

This, together with

Fλ = 2(λ− 2)

Fη = η

leads to the E-L equation

u(x)− 2 = u′′(x)

It is now our task to find a fitting function for the given constraints.

1. Is the function uniquely determinable at hand of the given constraints?
No, because some of the constraints are quite arbitrary, i.e. 2 ≤ u(0) ≤
3. Furthermore, some constraints are mutual exclusive, e.g. u(x) = 2+
0.5 exp(x) has the property of fulfilling 2 ≤ u(0) ≤ 3 but not u(log 2) =
1. One needs additional clearer constraints for a suitable solution.
Additionally, one condition is also given by the initial constraints, as
u′′(log 2) = u(log 2)− 2 = 1− 2 = −1.

2. If we consider u′(0) = 0, then we have to find a function that fits that
constraint. One possible family of functions for the second derivative
is u′′(x) = m1 exp(x) + m2 exp(−x). However, starting from u”(x),
we get two additional variables a and b from the integration. Hence
we only consider for a unique solution m = m1 = m2. To this end,
we can plug our constraint u′′(log 2) = −1 into this candidate equa-
tion, giving us m = −2

5
. A proper primitive function is then given
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as u′(x) = a − 2
5
(exp(x) − exp(−x)). With u′(0) = 0, this gives

u′(0) = a which gives a = 0. Then we integrate further, giving us
u(x) = b − 2

5
(exp(x) + exp(−x)). With the two constrainst given,

this becomes a linear system of equations, which results in u(x) =
2 − 2

5
(exp(x) + exp(−x)). Unfortunately the solution for u(0) is 6

5
, so

this also violates the 2 ≤ u(0) ≤ 3-condition.

3. Let us recapitulate: We know from part (a) that we need to solve
the differential equation u(x) − 2 = u′′(x) together with the side con-
straint u(log 2) = 1. From this we can compute u′′(log 2) = −1.
Another constraint that we are getting is u(0) = 2, which results in
u′′(0) = 0. From this we have 4 constraints and four unknowns. Let
us consider the candidate function for the second derivative f ′′(x) =
m1 exp(x)+m2 exp(−x). A proper primitive function would be f(x) =
m1 exp(x) + m2 exp(−x) + ax + b. Let us now plug in the constraints

for the second derivative: u′′(0) = m1 +m2
!

= 0, i.e. m1 = −m2. Then

with u′′(log 2) = 2m1 − 0.5m1
!

= −1, i.e. m1 = −2
3
. Plugging this into

the candidate function of f(x), we get f(x) = −2
3

exp(x)+ 2
3

exp(−x)+
ax + b. Plugging now the given constraint u(0) = 2 gives b = 2 and
u(log 2) = 2 gives a = 0, hence the function that correctly satisfies all
constraints is the function f(x) = 2− 2

3
(exp(x)− exp(−x)).

Problem 4 (Channel Reloaded) Assuming u(x) > 0, we can compute the
Lagrangian

F (x, λ, η) =
√

1 + η2 + zλ.

This function is convex in (λ, η), guaranteeing uniqueness of the optimal
solution. With

Fλ = z

Fη =
η√

1 + η2

we arrive at the Euler-Lagrange equation

d

dx

(
η√

1 + η2

)
= z(

η√
1 + η2

)
= zx+ c
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After some computations, this can be simplified to

u′(x) =
zx+ c√

1−
√
zx+ c)2

Then, we have to compute the anti-derivative, resulting in

u(x) =

∫ x

0

zs+ c√
1−

√
zs+ c)2

ds

=
1

z
(
√

1− c2 −
√

1− (zx+ c)2)).

Introducing the condition u(1) = 0 leads to c = − z
2

and hence

1

2z
(
√

4− z2 −
√

4− z2(2x− 1)2).

This optimum solution describes an arc of a circle.
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