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Exercise No. 1 – The Convex Complexity (5 + 3 + 3 + 3 = 14 points)
(a) Prove the following theorem from the lecture:

Suppose f ∈ C1. Then f is convex on a set S if and only if

f(y) ≥ f(x) + (∇f(x))>(y − x)

for all x, y ∈ S.

(b) Given convex functions f1, . . . , fm. Then the pointwise maximum f(x) = max{f1(x), . . . , fm(x)}
is also convex.

(c) Prove that the quadratic-over-linear function f(x, y) = x2

y is convex.

(d) Prove that the sublevel sets of a convex function are convex. Is the converse direction valid?

Hint: Make use of Jensen’s inequality: A function f : RN → R is convex if S ∈ RN is a convex set and if
for all x, y ∈ RN and Θ ∈ [0, 1] it holds

f(Θx+ (1−Θ)y) ≤ Θf(x) + (1−Θ)f(y).

Exercise No. 2 – The Ellipsoid Condition (1 + 3 = 4 points)
1. Given a symmetric positive definite matrix P ∈ Rn×n, there are several ways to write an ellipsoid

set:

• E = {x | (x− xc)>P−1(x− xc) ≤ 1}
• E = {xc +Au | ‖u‖ ≤ 1}

with A = P
1
2 . Show (e.g. by comparible sketches) that both definitions describe the same ellipsoid.

2. Compute the condition number of an ellipsoid.

Exercise No. 3 – The Himmelblau Sky (2 points)
Given the Himmelblau function

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2 (1)

Perform a Taylor expansion up to second order around the point (2, 3)>.
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Exercise No. 4 – The Conal Obfuscation (3 + 5 + 2 + 5∗ = 15 points)
In this exercise we want to consider the notion of projection and convex cones in the context of optimisation.
Cones: A set K ⊆ RN is a cone if x ∈ K ⇒ {αx | α > 0}. A cone K ⊂ RN is convex if and only if
K +K ⊆ K. The polar cone Kp is defined as Kp := {s ∈ RN | 〈s, x〉 ≤ 0 for all x ∈ K}.
Projection: Consider the minimisation problem

inf


1

2
‖y − x‖2︸ ︷︷ ︸
=:fx(y)

, y ∈ C


for K nonempty, closed, convex set. Then considering the level set for k ∈ C

S := {y ∈ RN : fx(y) ≤ fx(c)}

the minimisation process becomes

inf{fx(y) : y ∈ C ∪ S, y ∈ C}

For a convex function we can define an operator pc : C → C that assigns to each x ∈ C the unique solution
of the minimisation problem.

1. Are the following sets cones or even convex cones?

• {x ∈ RN | x ≥ 0}
• {x = (x1, x2)> ∈ R2 | x1 ≥ 0 ∧ x2 = 0 ∨ x1 = 0 ∧ x2 ≥ 0}
• {x ∈ RN | x ≥ 0} ∪ {x ∈ RN | x ≤ 0}

2. Prove: A point yx ∈ C is the projection is the projection pc(x) of x ∈ RN if and only if

〈x− yx, y − yx〉 ≤ 0 for all x, y ∈ C

3. What is the geometrical interpretation of part (b)?

4. Prove: Let K be a closed convex cone. Then yx = pK(x) if and only if

〈x− yx, yx〉 = 0, yx ∈ K, x− yx ∈ Kp.
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