
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Lecture Notes

Numerical Algorithms

for Visual Computing III

Summer Semester 2011

Michael Breuß

LATEX by Kai Hagenburg

2011-7-12

Contents

1 Variational Methods I: Introduction 5

1.1 A model problem 5

1.2 The Euler-Lagrange equation 7

2 Variational Methods II: The Euler-Lagrange equation 11

2.1 Justification of the Euler-Lagrange equation 11

2.2 Multiple dimensions 13

2.3 Other boundary conditions 15

3 Variational Methods III: Complex Computations 17

3.1 Systems of Euler-Lagrange equations 17

3.2 Example from image segmentation 20

4 Numerical Treatment of Variational Problems 23

4.1 Discretisation of the Euler-Lagrange equation 24

5 Numerical Treatment of Variational Problems II: Direct Optimi-
sation Approach 27

5.1 Integration of the Energy functional 27

5.2 Building the Bridge between Euler-Lagrange and Direct Optimisation 29

6 Descent Methods: An Introduction 31

6.1 Generic Algorithm Formulation 32

6.2 Basic Line Searching Strategies 32

7 Basic Order Line Search 35

7.1 Newton’s method 38

8 The Trust Region Method 41

9 Convexity of Objective Functions 45

9.1 First order convexity condition 45

9.2 Second order convexity condition 46

3

Contents

9.3 Consequences of Convexity Conditions 46

10 Convex Functions and Convex Sets 49

10.1 Condition number of sublevel sets 49

10.2 Analysis of Gradient Descent 51

11 Constrained Optimisation 53

11.1 Penalisation and Barrier Methods 53

11.2 Lagrange Multiplier 55

11.3 Augmented Lagrangian algorithms 56

12 Duality in Constrained Optimization 57

12.1 Karush-Kuhn-Tucker (KKT) optimality conditions 59

13 The Bregman Iteration 61

13.1 Bregman Distance and Duality 61

13.2 Application to TV Denoising 62

14 Splitting Schemes 67

14.1 The Proximal Point Algorithm 68

14.2 Monotone Operators 68

14.3 Problem Structure Revisited 70

15 Fast Optimisation and Rank-Deficient Problems 73

15.1 Theory of QR-Decomposition 74

15.2 Computing Q and R 75

4

1 Variational Methods I: Introduction

Motivation

Variational models play a significant role in image processing and computer vision, e.g.
for

• segmentation,

• optic flow, etc.

In order to give an idea of variational problems, we focus now on a simple 1-D setting,
discussing in some detail:

• how a variational problem arises

• Euler-Lagrange-equations

• convex and nonconvex problems

• constraints

1.1 A model problem

The variational problem is to find the infimum of the integrals

I(u) ≡ I(u(x)) =

∫

Ω

F (x, u(x), u′(x)) dx, (1.1)

where x ∈ R and Ω = (a, b) ⊂ R is an interval.

For the beginning, we assume that there is a constraint of the form

u(x) := u0(x) for x ∈ ∂Ω = {a, b}, (1.2)

however, also other kinds of constraints - e.g. on u′(x) - will be discussed later. The
proposed task consists in finding a function U(x), U : (a, b) → R, that is admissible
according to the constraint imposed on competing functions u(x) such that the integral

∫

Ω

F (x,U(x),U ′(x)) dx (1.3)

5

1 Variational Methods I: Introduction

is smaller than (or equal to) the same integral for any other feasible function u.
The integrand

F : Ω× R× R → R (1.4)

is sometimes called the Lagrangian.

Let us see now how a variational optimisation problem arises.

Example 1.1 We consider a minimal surface problem meaningful in image processing.
As the corresponding image processing setting is not self-explanatory, we use here a
simple equivalent physical setting for the modeling.
We consider the profile of a channel of length L with the following geometry:

× ×0

R
x

u(x)
Channel

The channel shall be filled, e.g. with water, so that the amount of water W the
channel can transport at any point z ∈ [0, L] is determined by its profile:

W (z) =

R∫

0

|u(x)| dx

The loss of water through the boundary of the channel is proportional to the surface
of the boundary, i.e., to the length of the curve C(x) := (x, u(x))⊤ ⊂ R

2. This length
is determined as follows:

A standard formula for the length of C(x), for x over (0, R), is

R∫

0

∥
∥C ′(x)

∥
∥
2
dx =

R∫

0

∥
∥
∥
∥
∥
∥
∥






d

dx
[x]

d

dx
[u(x)]






∥
∥
∥
∥
∥
∥
∥
2

dx

=

R∫

0

∥
∥
∥
∥

(
1

u′(x)

)∥
∥
∥
∥
2

dx =

R∫

0

√

1 + [u′(x)]2 dx.

Consider now the problem, that the channel has to transport a prescribed amount of
water W at every point z ∈ [0, L], and we aim to minimise the loss of water on the
way from 0 to L, thus asking for the shape of the optimal profile u(x).

The optimisation problem reads:

Minimise

R∫

0

√

1 + [u′(x)]2 dx under the constraints:

6

1.2 The Euler-Lagrange equation

(i) u(0) = 0,

(ii) u(R) = 0,

(iii)

R∫

0

|u(x)| dx = W .

1.2 The Euler-Lagrange equation

A usual strategy to solve the optimisation problems is to look for necessary conditions
an optimal solution must satisfy. By exploiting such conditions, optimal solutions can
be found or approximated explicitly in a variety of situations.

Simple example:
In attempting to find the minimum of a function f(x), one can look for
all points x with f ′(x) = 0.

We explore in this paragraph the following theorem, formulated in 1-D for the cost function

I(u) =

∫

Ω

F (x, u(x), u′(x)) dx (1.5)

For this, we use the variables λ, η within the Lagrangian F , writing formally:

F (x, λ, η) : Ω× R× R → R, (1.6)

where F is assumed to be twice differentiable with respect to (λ, η).

Theorem 1.1 Under the setting described above:

1. If u is an optimal solution, then u must also be a solution of the problem “(E-L)”







d

dx
[Fη(x, u(x), u

′(x))] = Fλ(x, u(x), u
′(x)) in Ω, and

u ≡ u0 on ∂Ω.
(1.7)

The differential equation in (1.7) is called Euler-Lagrange equation.

2. If u satisfies (E-L) and F is convex with respect to the variables (λ, η) for each
fixed x ∈ Ω, then u is also an optimal solution of the variational problem.

3. If, in addition, F is strictly convex with respect to (λ, η) for each x ∈ Ω, the
optimal solution u is unique, provided it exists.

Remark: F depends formally on (x, λ, η), and it is just evaluated at (x, u(x), u′(x)).
We will see in computations why this notation may help to avoid errors.

7

1 Variational Methods I: Introduction

Example 1.2 Assume the most simple situation in which F depends on η exclusively,
i.e. F = F (η). For this, (E-L) simplifies as follows

d

dx
[Fη(x, u, u

′)] ≡
d

dx
[Fη(u

′)] =
d

dx
[F ′(u′)], (1.8)

and Fλ(x, u, u
′) ≡ Fλ(u

′) = 0, so that we obtain

d

dx
[F ′(u′)] = 0, (1.9)

which in turn holds if

F ′(u′) = k, k constant. (1.10)

Evidently, this last requirement is fulfilled, if we take u′ constant throughout the
inverval (a, b) and this is the case if u is indeed the straight line joining the points
(a,A), (b,B).

Sketch:

a b

A

B
u

x

Note:

(i) Such a linear function is always a solution of (E-L) if F only depends on η.

(ii) If, in addition, F is convex, that linear function will be a minimiser.

(iii) If, in addition, F is strictly convex, this linear function will be the only minimiser
of the problem.

Example 1.3 (Non-convexity) Let us take

F ≡ F (η) = e−η2 , a = A = B = 0, b = 1. (1.11)

In this situation, the linear function through the points (a,A) = (0, 0) and (b,B) =
(1, 0) is the function ũ ≡ 0 on the whole interval (0, 1). Its cost is

1∫

0

F (x, ũ, ũ′) dx
(1.11)
=

1∫

0

e−(ũ′)2 dx =

1∫

0

e−02

︸︷︷︸

=1

dx = 1 (1.12)

However let us consider the sequence of feasible functions

uj(x) = j(x−
1

2
︸ ︷︷ ︸

= 1
4

for x∈{0,1}={a,b}

)2 −
j

4
. (1.13)

8

1.2 The Euler-Lagrange equation

We compute

u′j(x) = 2j(x−
1

2
) = j(2x − 1), (1.14)

so that

lim
j→∞

e−(u′

j(x))
2

= lim
j→∞

e−j2(2x−1)2 =







e−∞ ≡ 0, x 6=
1

2

e0 = 1, x =
1

2

(1.15)

As the measure of the point x = 1
2 is zero, the contribution by e0 = 1 under the cost

integral is zero, and we obtain the cost

lim
j→∞

1∫

0

e−(u′

j(x))
2

dx =

1∫

0

0 dx = 0, (1.16)

i.e., the infimum of the integrals

I(u) =

1∫

0

e−(u′(x))2 dx (1.17)

subject to u(0) = u(1) = 0 is zero. Hence ũ is a solution of (E-L), but it is not
a minimiser. What fails here is the convexity of F . It is even true that there is no
minimiser for this problem, because such a minimizer v(x) would have to satisfy

1∫

0

e−(v′(x))2 dx = 0,

which is impossible for a differentiable v(x).

When the integrand F depends on both x and η, (E-L) becomes

d

dx
[Fη(x, u

′)] = Fλ(x, u
′) ≡ 0, (1.18)

or equivalently,

Fη(x, u
′) = constant. (1.19)

Depending on the particular form of F , (1.19) will be solvable or not.

Example 1.4 (of Weierstrass, concerned with constraints) Let

F (x, η) = xη2, x ∈ (0, 1), (1.20)

9

1 Variational Methods I: Introduction

and u(0) = 1, u(1) = 0. We compute (E-L):

d

dx
[Fη(x, η)] = Fλ(x, λ)

⇔
∂

∂x

[
∂

∂η
[xη2]

]

=
∂

∂λ
[xη2]

⇔
∂

∂x
[2xη] = 0

⇔ 2xη = c′ := constant

⇔ xη = constant,

i.e., with η ≡ u′(x), we obtain the Euler-Lagrange equation

x · u′(x) = c. (1.21)

As (1.21) is equivalent to u′(x) = c · 1
x

(for x 6= 0) this yields

u(x) = c · ln(x) + d, (1.22)

where c, d are arbitrary constants. We find: ln(ε) 7→ −∞ for ε ↓ 0, implying c = 0
and d = 1 by the condition u(0) = 1. However, since u(1) = 0 is not possible by this
choice, no solution exists.

Summary

• In variational problems, one needs to be very careful with the properties of the
Lagrangian as well as with the constraints.

• Also very simple settings may impose severe difficulties.

10

2 Variational Methods II: The

Euler-Lagrange equation

Motivation

• The Euler-Lagrange equation (E-L) constitutes many successful schemes in im-
age processing and computer vision.

• Looking at the basics helps for a better understanding of models.

We will dwell on the issue, why optimal solutions must also be solutions of (E-L) at
the level of underlying ideas. We will treat a simple 1-D case, and then we will indicate
extensions.

2.1 Justification of the Euler-Lagrange equation

The 1-D Euler-Lagrange equation reads as

d

dx
[Fu′(x, u, u′)] = Fu(x, u, u

′), (2.1)

see (E-L) from (1.7). We do not want to omit the other ingredients of interest:

u(a) = A, u(b) = B, I(u) =

b∫

a

F (x, u(x), u′(x)) dx (2.2)

Let ϕ be a fixed function satisfying the requirements ϕ(a) = ϕ(b) = 0, and let us
consider the following function of a single variable

g(t) := I(u+ t · ϕ)

=

b∫

a

F (x, u(x) + t · ϕ(x), u′(x) + t · ϕ′(x)) dx (2.3)

Thereby, we assume that u is an optimal solution yielding the minimal value of the
above integrals among all feasible functions. ϕ may be understood as a pertubation
of u.

11

2 Variational Methods II: The Euler-Lagrange equation

For each choice of t ∈ R, the function u+ t ·ϕ turns out to be admissible, because ϕ

vanishes on the endpoints of the interval (a, b). Thus, g has a minimum for t = 0.

A necessary condition for the occurence of a local minimum is, that the derivative
vanishes at such a point:

0 =
d

dt
g(t) =

d

dt

b∫

a

F (x, u+ t · ϕ, u′ + t · ϕ′) dx (2.4)

=

b∫

a

d

dt
F (x, u+ t · ϕ, u′ + t · ϕ′) dx, (2.5)

assuming that we can perform the latter operation. We now compute the total differential
below the latter integral. For this, we set:







F ≡ F (x, λ, η),

x(t) = x (constant with respect to t),

λ(t) = u+ t · ϕ,

η(t) = u′ + t · ϕ′

(2.6)

Then the total differential reads as:

d

dt
F (x(t), λ(t), η(t))

=
∂F

∂x
(x, λ, η) ·

dx

dt
(t) +

∂F

∂λ
(x, λ, η) ·

dλ

dt
(t) +

∂F

∂η
(x, λ, η) ·

dη

dt
(t) (2.7)

With dx
dt (t) = 0, dλdt (t) = ϕ, dηdt (t) = ϕ′ we obtain

d

dt
F (x, λ, η) = Fλ(x, λ, η) · ϕ+ Fη(x, λ, η) · ϕ

′ (2.8)

(2.6)
= Fλ(x, u+ tϕ, u′ + tϕ′)ϕ+ Fη(x, u+ tϕ, u′ + tϕ′) · ϕ′.

Plugging (2.8) into (2.5), and evaluating the integral at t = 0, yields:

g′(t)
∣
∣
∣
t=0

= 0
︸ ︷︷ ︸

as u is optimal

=

b∫

a

[
Fλ(x, u, u

′) · ϕ+ Fη(x, u, u
′) · ϕ′

]
dx (2.9)

In order to get rid off the derivative in the term ϕ′, we perform a partial integration

12

2.2 Multiple dimensions

of the second part of the integral:

b∫

a

Fη(x, u, u
′)ϕ′ dx =

[

Fη(x, u, u
′)ϕ
]b

a
−

b∫

a

d

dx
[Fη(x, u, u

′)] · ϕ dx

= Fη(b, u(b), u
′(b))ϕ(b)

︸︷︷︸

=0

−Fη(a, u(a), u
′(a)) · ϕ(a)

︸︷︷︸

=0

−

b∫

a

d

dx
[Fη(x, u, u

′)]ϕ dx

= −

b∫

a

d

dx
[Fη(x, u, u

′)]ϕ dx (2.10)

Putting the result back into (2.9) yields

0 =

b∫

a

[Fη(x, u, u
′)−

d

dx
Fη(x, u, u

′)] · ϕ dx (2.11)

Since ϕ is arbitrary, save for its vanishing values at a, b, the identity (2.11) can happen
only if the expression within brackets vanishes identically to zero over (a, b): this is
the Euler-Lagrange equation, compare Theorem 1.1. The other parts of that theorem
we skip here as they require more sophisticated mathematical arguments.

2.2 Multiple dimensions

The extension to n ≥ 1 dimensions of the 1-D (E-L), where we use again F ≡
F (x, λ, η), F : Ω× R× R

n 7→ R is as follows:

{

div(Fη(x, u,∇u)) = Fλ(x, u,∇u) in Ω ⊂ R
n

u = u0 on ∂Ω.
(2.12)

Note, that η is now a vector in R
n. The output for F ≡ F (∇u), i.e. for Fη(∇u), is

a vector, e.g. for Ω ⊂ R
2 and ~x = (x1, x2)

⊤ we identify

Fη(∇u) ≡

(
a1(~x)
a2(~x)

)

≡ ~a. (2.13)

Then the divergence operation in (2.12) consists of

div ~a = ∇ · ~a =






∂

∂x1
∂

∂x2




 ·

(
a1(~x)
a2(~x)

)

=
∂

∂x1
a1(~x) +

∂

∂x2
a2(~x) (2.14)

13

2 Variational Methods II: The Euler-Lagrange equation

Example 2.1 (Image inpainting with linear diffusion) We consider the 2-D case,
with u : Ω ⊂ R

2 → R is the unknown function, for which u0 is given at ∂Ω. In 2-D,
let us denote spatial variables by x and y. We would like to minimise the integral

I(u) =
1

2

∫

Ω

‖∇u‖22 dx dy, (2.15)

where

‖∇u‖22 =

∥
∥
∥
∥

(
ux
uy

)∥
∥
∥
∥

2

2

=
(√

u2x + u2y

)2

= u2x + u2y. (2.16)

We notice that the Lagrangian

F (η) =
1

2
‖η‖22 =

1

2
|η|2. (2.17)

is a strictly convex function of η. For the computation of Fη(x, λ, η), we basically
treat η as if it is a scalar number, although it is a vector. Thus, we obtain here

Fη(η) ≡ F ′(η) =

[
1

2
|η|2
]′

=

[
1

2
η2
]

= η. (2.18)

Then again, for the evaluation of

div
(
F ′(η)

∣
∣
η=∇u

)
, (2.19)

we need that ∇u is a vector:

F ′(η)
∣
∣
η=∇u

(2.18)
= η

∣
∣
η=∇u

= ∇u, (2.20)

so that

div (F ′(∇u)) = div (∇u) (2.21)

=






∂

∂x
∂

∂y




 ·

(
ux
uy

)

=
∂

∂x
ux
︸︷︷︸
∂
∂x

u

+
∂

∂y
uy
︸︷︷︸
∂
∂y

u

=
∂2

∂x2
u+

∂2

∂y2
u = uxx + uyy =: ∆u,

where ∆ := ∂2

∂x2 + ∂2

∂y2
is called the Laplace-Operator. As F ≡ F (η), we also obtain

Fλ(η) = 0, so that the Euler-Lagrange equation finally reads as

∆u = 0 (2.22)

also called Laplace equation, or linear diffusion equation. The corresponding necessary
condition for the unique minimiser of (2.15),

{

∆u = 0 in Ω

u = u0 on ∂Ω,
(2.23)

is often interpreted as a stable equilibrium with respect to an energy proportional to
the square of the gradient of u.

14

2.3 Other boundary conditions

2.3 Other boundary conditions

If we do not assume ϕ(a) = ϕ(b) = 0 - which we have done for fixing u(a) = A,
u(b) = B - we need to make sure in the above derivation, that

Fη(b, u(b), u
′(b))ϕ(b) − Fη(a, u(a), u

′(a))ϕ(a) = 0. (2.24)

For arbitrary ϕ, this can only be assured by

Fη(x, u, u
′) = 0 at ∂Ω. (2.25)

In multiple dimensions, e.g. in 2-D, (2.13) generalizes to

~n⊤ · Fη(x, y, λ, η)
∣
∣
∣
(x,y,u,∇u)

= 0. (2.26)

The constraint (2.26) is called natural boundary conditions, ~n is a unit normal vector
on ∂Ω (pointing outside).

Sketch:

a

b

~n(a)

~n(b)

Ω

length 1
︷ ︸︸ ︷

length 1
︷ ︸︸ ︷

„−1“ „+1“
a ∈ ∂Ω b ∈ ∂Ω

‖~n‖2 = 1

Summary

• The Euler-Lagrange equation is shown to be a necessary condition for a min-
imiser.

• Several settings, e.g. with multiple dimensions or different boundary constraints
can be adressed by it.

15

3 Variational Methods III: Complex

Computations

Motivation

Variational models that combine several strategies into one functional may lead to the
minimisation with respect to several unknown functions at the same time.

In this paragraph, we elaborate on a simple example.

3.1 Systems of Euler-Lagrange equations

We consider the minimisation of the functional

E(u, v) =

∫

Ω

F (x, y, u, v,∇u,∇v) dx dy, (3.1)

where Ω ⊂ R
2 and

u := u(x, y), v := v(x, y), ∇ :=







∂

∂x

∂

∂y







. (3.2)

In order to make use of the already developed proceeding in §2.1, we also fix values of
u, v at the image boundary ∂Ω.

Let ϕ := ϕ(x, y) and Ψ := Ψ(x, y) be some fixed perturbation function with ϕ ≡
0,Ψ ≡ 0 on ∂Ω, and let us consider the function

g(t, s) := E(u+ t · ϕ, v + s ·Ψ) (3.3)

=

∫

Ω

F (x, y, u + t · ϕ, v + s ·Ψ,∇u+ t · ∇ϕ,∇v + s · ∇Ψ) dx dy

Analogously to the procedure in §2.1, we assume that u, v denote optimal solutions,
and this implies that g(t, s) has a local minimum at (t, s) = (0, 0). A necessary

17

3 Variational Methods III: Complex Computations

condition for having a minimum of g(t, s) is

∇(t,s)g(t, s) =







∂

∂t
g(t, s)

∂

∂s
g(t, s)







=

(
0
0

)

, (3.4)

see Sketch.

Sketch:

Thus, by (3.4) we get the system of conditions






0 =
∂

∂t
g(t, s) =

∫

Ω

∂

∂t
F (x, y, u+ t · ϕ, v + s ·Ψ,∇u+ t · ∇ϕ,∇v + s · ∇Ψ) dx dy

0 =
∂

∂s
g(t, s) =

∫

Ω

∂

∂s
F (x, y, u+ t · ϕ, v + s ·Ψ,∇u+ t · ∇ϕ,∇v + s · ∇Ψ) dx dy

(3.5)

compare (2.4), (2.5).

We now exercise the first differential in (3.5). For this, we set

F ≡ F (x̃, ỹ, λ, γ, η1, η2, ξ1, ξ2) (3.6)

with






x̃(t, s) = x

ỹ(t, s) = y

λ(t, s) = u+ t · ϕ

γ(t, s) = v + s ·Ψ

η1(t, s) = ux + t · ϕx

η2(t, s) = uy + t · ϕy

ξ1(t, s) = vx + s ·Ψx

ξ2(t, s) = vy + s ·Ψy

(3.7)

18

3.1 Systems of Euler-Lagrange equations

Then we obtain

∂

∂t
F =

∂F

∂x̃
·
∂x̃

∂t
+

∂F

∂ỹ
·
∂ỹ

∂t
+

∂F

∂λ
·
∂λ

∂t
(3.8)

+
∂F

∂γ
·
∂γ

∂t
+

∂F

∂η1
·
∂η1

∂t
+

∂F

∂η2
·
∂η2

∂t

+
∂F

∂ξ1
·
∂ξ1

∂t
+

∂F

∂ξ2
·
∂ξ2

∂t
,

neglecting the arguments of F and of the functions from (3.7), respectively. By

∂x̃

∂t
=

∂ỹ

∂t
=

∂γ

∂t
=

∂ξ1

∂t
=

∂ξ2

∂t
= 0,

∂λ

∂t
= ϕ,

∂η1

∂t
= ϕx,

∂η2

∂t
= ϕy, (3.9)

we get in total:

∂

∂s
F =

∂F

∂λ
· ϕ+

∂F

∂η1
· ϕx +

∂F

∂η2
· ϕy. (3.10)

Analogously, we can compute

∂

∂s
F =

∂F

∂γ
·Ψ+

∂F

∂ξ1
·Ψx +

∂F

∂ξ2
·Ψy. (3.11)

Let us remark here that one could have simplified these computations slightly making
use of F = F (x̃, ỹ, λ, γ, η, ξ) with vector-valued variables

η(t, s) = ∇u+ t · ∇ϕ, ξ(t, s) = ∇v + s · ∇Ψ. (3.12)

In the stages of the above computation, this would have lead to

∂

∂t
F =

∂F

∂x̃
·
∂x̃

∂t
+

∂F

∂ỹ
·
∂ỹ

∂t
+

∂F

∂λ
·
∂λ

∂t
+

∂F

∂γ
·
∂γ

∂t
(3.13)

+
∂F

∂η
·
∂η

∂t
+

∂F

∂ξ
·
∂ξ

∂t
,

compare (3.8), and consequently to the set of equations







∂

∂t
F =

∂F

∂λ
· ϕ+

∂F

∂η
· ∇ϕ,

∂

∂s
F =

∂F

∂γ
·Ψ+

∂F

∂ξ
· ∇Ψ,

(3.14)

compare (3.10), (3.11). The only thing to note is that one needs to take care of the
vector dimensions, as

∂F

∂η
· ∇ϕ =







∂

∂η1
F

∂

∂η2
F







·

(
ϕx

ϕy

)

=
∂F

∂η1
ϕx +

∂F

∂η2
ϕy, (3.15)

19

3 Variational Methods III: Complex Computations

∂F
∂ξ

· ∇Ψ being formed analogously.

Making use of (3.10), (3.11), and evaluating the integrals (3.5) at (t, s) = (0, 0) gives
the necessary optimality conditions







0 =

∫

Ω

Fλ · ϕ+ Fη1 · ϕx + Fη2 · ϕy dx dy

0 =

∫

Ω

Fγ ·Ψ+ Fξ1 ·Ψx + Fξ2 ·Ψy dx dy
(3.16)

Corresponding to the procedure in (2.10), we can perform integration by parts with
respect to both the variables x and y. Employing also along the boundary ϕ ≡ 0 ≡ Ψ
we obtain







0 =

∫

Ω

[Fλ −
∂

∂x
Fη1 −

∂

∂y
Fη2] · ϕ dx dy

0 =

∫

Ω

[Fγ −
∂

∂x
Fξ1 −

∂

∂y
Fξ2] ·Ψ dx dy,

(3.17)

compare (2.11). With the more compact notation of divergence from (2.14) we thus
obtain the system of Euler-Lagrange equations:

{

0 = Fλ − div Fη

0 = Fγ − div Fξ

(3.18)

Summary

• Minimising a functional with respect to n unknown functions gives n Euler-
Lagrange equations.

• Employing a compact notation means to take care of vector dimensions.

3.2 Example from image segmentation

In 1992, Ambrosio and Tortorelli suggested the following model for image segmenta-
tion:

EAT (u, v) :=

∫

Ω

β(u− f)2 + v2|∇u|2 (3.19)

+α ·

(

c|∇v|2 +
(1− v)2

4c

)

dx dy,

where

• u is a smoothed version of the input image f ,

20

3.2 Example from image segmentation

• v is a smooth edge detector function with v ≈ 0 at edges and v ≈ 1 within a
region,

• α, β, c are real, user-defined parameters.

Employing F ≡ F (x̃, ỹ, λ, γ, η1, η2, ξ1, ξ2) with







x̃(t, s) := x, ỹ(t, s) := y

λ := λ(u) = u

γ := γ(v) = v

η1 := η1(u) = ux η2 := η2(u) = uy

ξ1 := ξ1(v) = vx ξ2 := ξ2(v) = vy

(3.20)

F = β(λ− f)2 + γ2(η21 + η22) + α · (c(ξ21 + ξ21) +
(1− γ)2

4c
)

gives

• by







Fλ = 2β(λ− f)

Fη1 = 2γ2η1

Fη2 = 2γ2η2

(3.21)

and by evaluating the terms at (u, v) the first Euler-Lagrange equation:

0 = β(u− f)− div (γ2∇u) (3.22)

• by







Fγ = 2γ(η21 + η22)−
2α

4c
(1− γ)

Fξ1 = 2αcξ1

Fξ2 = 2αcξ2

(3.23)

and by evaluating the terms at (u, v) the second Euler-Lagrange equation:

0 = v|∇u|2 −
α

4c
(1− v)− div (αc∇v). (3.24)

21

4 Numerical Treatment of Variational

Problems

Motivation

How do we implement variational models on a computer?

We discuss in detail the 1-D case, the extension to higher dimensions is straightforward.
We employ the model problem

E(u) =

b∫

a

(u− f)2 + αΨ((u′)2) dx (4.1)

with natural boundary constraints, which we assume here to lead to homogeneous
Neumann boundary conditions:

u′(x) = 0 for x = a, b. (4.2)

Computing the Euler-Lagrange equation for (4.1), we have the ingredients:







F (x, u, u′) = (u− f)2 + αΨ((u′)2)

Fu(x, u, u
′) = 2(u− f)

Fu′(x, u, u′) = αΨ′((u′)2) · 2u′
(4.3)

so that we obtain

2(u− f) =
d

dx
[2αΨ′((u′)2)u′], (4.4)

i.e. as α is a scalar parameter independent of x,

u− f

α
=

d

dx
[Ψ′((u′)2)u′]. (4.5)

We now discuss how to solve (4.5).

23

4 Numerical Treatment of Variational Problems

4.1 Discretisation of the Euler-Lagrange equation

We may discretise all occurring derivatives in (4.5) by use of pixel-wise given values

uj ≡ u(xj), (4.6)

where xj is the center of the j-th pixel. The pixel width is given by the spatial mesh parameter
∆x:

uj ≡ u(xj) = u(j∆x) (4.7)

Sketch

× × × × ×

pixel of width∆x
∆x
2

3∆x
2

0 1∆x 2∆x 3∆x

pixel boundaries at (j ± 1
2)∆x for pixel number j

Remarks: (i) One can also center pixels at (j ± 1
2)∆x, and use pixel boundaries

at j∆x. This is sometimes useful.

(ii) In image processing, often ∆x = 1 is chosen. However, we rec-
ommend to write all formulae with ∆x and not with that special
choice, as this proceeding enables to avoid many errors.

Popular and simple finite differences are:







u′j ≈
uj+1 − uj

∆x
forward difference, first-order discretisation,

u′j ≈
uj − uj−1

∆x
backward difference, first-order discretisation,

u′j ≈
uj+1 − uj−1

2∆x
central difference, second-order discretisation.

(4.8)

Higher order derivative discretisations, e.g. u′′j , can be computed by concatenating
first order derivative discretisations from (4.8).

Example 4.1 Rewriting (4.5), we obtain pixelwise

0 = uj − fj − α
d

dx

[
Ψ′((u′)2)u′

]∣
∣
x=xj

(4.9)

Now, we employ:

• u′(xj) ≈
uj − uj−1

∆x
(backward difference)

•
d

dx
[. . .]

∣
∣
∣
∣
x=xj

≈
[. . .]|xj+1

− [. . .]|xj

∆x
(forward difference).

24

4.1 Discretisation of the Euler-Lagrange equation

This gives

d

dx
[Ψ′((u′)2)u′]

∣
∣
∣
∣
x=xj

≈
[Ψ′([u′(xj+1)]

2)u′(xj+1)]− [Ψ′([u′(xj)]
2)u′(xj)]

∆x

≈
1

∆x

(

Ψ′

([
uj+1 − uj

∆x

]2
)

uj+1 − uj

∆x
−Ψ′

([
uj − uj−1

∆x

]2
)

uj − uj−1

∆x

)

= Ψ′

(
(uj+1 − uj)

2

∆x2

)
uj+1 − uj

∆x2
−Ψ′

(
(uj − uj−1)

2

∆x2

)
uj − uj−1

∆x2
(4.10)

For a grid with pixels j = 1, . . . , N , the boundary conditions (4.2) can be realised via
two dummy pixels with numbers 0 and N + 1, and corresponding ghost data

u0 := u1, uN+1 := uN . (4.11)

Note that it also depends on discretisation: the central difference leads to u0 := u2
and uN+1 := uN−1.

The mathematical task boils down to solving the (nonlinear) system of equations

0 = uj − fj − αΨ′

(
(uj+1 − uj)

2

∆x2

)
uj+1 − uj

∆x2
(4.12)

+αΨ′

(
(uj − uj−1)

2

∆x2

)
uj − uj−1

∆x2
, j = 1, . . . , N.

Remarks: (i) We assume here, that the derivative of Ψ can be computed analyt-
ically.

(ii) One may employ different choices than those in this example. The
effect of the above choice is, that, in (4.12) the j-th equation only
depends on {uj−1, uj , uj+1}.

Example 4.2 Writing again

u− f

α
=

d

dx
[Ψ′((u′)2)u′], (4.13)

we may understand α as an artificial time variable, by which we obtain for α ց 0

∂

∂t
u(x, t) =

∂

∂x

[

Ψ′

([
∂

∂x
u(x, t)

]2
)

∂

∂x
u(x, t)

]

. (4.14)

In (4.14),

25

4 Numerical Treatment of Variational Problems

• we have augmented the unknown function u by an argument depending on the
introduced artificial time:

u(x) 7→ u(x, t),

• the spatial derivative in u′ goes over to a partial derivative depending on x:

u′(x) 7→
∂

∂x
u(x, t).

The partial differential equation (PDE) (4.14) needs to be solved by use of:

(i) the initial condition

u(x, 0) = f(x) (4.15)

and

(ii) at any time t with Neumann boundary conditions

∂

∂x
u(x, t) = 0

∣
∣
x∈{a,b}

(4.16)

Technically, one may understand this way to solve (4.5) as a parametrisation of α,
where t ∈ [0, α]. The „stopping time“ when integrating (4.5) is thus the parameter α.
A simple and popular way to deal with ∂

∂t
is to use the Euler forward descretisation:

t ≡ n ·∆t =: tn
∂

∂t
u(x, tn) ≈

u(x, (n + 1)∆t)− u(x, n∆t)

∆t
, (4.17)

where n is to be understood as time step number and ∆t as the time size.

This explicit time stepping choice, i.e. all terms with derivatives are considered to be
given, yields very simple iterative schemes: Using this together with formula (4.10),
we obtain

un+1
j − unj

∆t
= Ψ′

(

(unj+1 − unj)
2

∆x2

)

unj+1 − unj

∆x2
(4.18)

−Ψ′

(

(unj − unj−1)
2

∆x2

)

unj − unj−1

∆x2

where the upper index denotes the time level, and u0 := fj.

26

5 Numerical Treatment of Variational

Problems II: Direct Optimisation

Approach

Motivation

Is it possible to deal with variational models without resorting to the Euler-Lagrange
equation?

We start again from the model problem of §4 with the “continuous-scale” functional

E(u) =

b∫

a

(u− f)2 + αΨ([u′]2) dx. (5.1)

5.1 Integration of the Energy functional

Via local quadrature (mid-point rule)

x
j+1

2∫

x
j− 1

2

ϕ(x) dx ≈ (xj+ 1
2
− xj− 1

2
)

︸ ︷︷ ︸

∆x

ϕ(xj) (5.2)

we obtain its discrete version

E∆(u) := ∆x

N∑

j=1

(uj − fj)
2 + αΨ([u′]2)

∣
∣
∣
∣
∣
∣
x=xj

. (5.3)

27

5 Numerical Treatment of Variational Problems II: Direct Optimisation
Approach

Sketch

Also here, we need to discretise u′(x), which we do in (5.3) by use of forward differ-
ences:

E∆(u) ≈ ∆x

N∑

j=1

(uj − fj)
2 + αΨ

(
(uj+1 − uj)

2

∆x2

)

. (5.4)

As we seek a minimiser of E∆(u), where u = (u1, . . . , uN)⊤, we can explore a
necessary condition for optimality in the form of vanishing partial derivatives:

∂E∆(u)

∂uj

!
= 0, for j = 1, . . . , N. (5.5)

Computing these partial derivatives, we obtain:

j = 1 : 2∆x(u1 − f1)− 2α∆xΨ′

(
(u2 − u1)

2

∆x2

)
u2 − u1

∆x2

+2α∆xΨ′

(
(u1 − u0)

2

∆x2

)
u1 − u0

∆x2
!
= 0 (5.6a)

j = 2, . . . , N − 1 : 2∆x(uj − fj)− 2α∆xΨ′

(
(uj+1 − uj)

2

∆x2

)
uj+1 − uj

∆x2

+2α∆xΨ′

(
(uj − uj−1)

2

∆x2

)
uj − uj−1

∆x2
!
= 0 (5.6b)

j = N : 2∆x(uN − fN)− 2α∆xΨ′

(
(uN+1 − uN)2

∆x2

)
uN+1 − uN

∆x2

+2α∆xΨ′

(
(uN − uN−1)

2

∆x2

)
uN − uN−1

∆x2
!
= 0 (5.6c)

28

5.2 Building the Bridge between Euler-Lagrange and Direct Optimisation

For the boundary conditions, we set u0 := u1, uN+1 := uN , and obtain:

left boundary: u0 := u1 (5.7)

⇒ 2α∆xΨ′

(
(u1 − u0)

2

∆x2

)
u1 − u0

∆x2
= 0 (in (5.6a))

right boundary: uN+1 := uN (5.8)

⇒ 2α∆xΨ′

(
(uN+1 − uN)2

∆x2

)
uN+1 − uN

∆x2
= 0 (in (5.6c))

Comparing with §4, we observe that this gives finally the same nonlinear system of
equations as (4.18), but without using the Euler-Lagrange equation. Note that we
have employed special choices for discretisation that "fit"!

Two questions and answers

1: Is it a surprise that we obtain by both approaches the same system of equations ?

Mathematically not, as we have explored (i) via the Euler-Lagrange equation and (ii)
the condition (5.5) in both cases necessary conditions for an extremum.

2: Is there any difference at all between the two approaches, as they lead to exactly
the same system to solve?

• For the Euler-Lagrange approach in §4, we first employed the necessary optimality
condition, and then we discretised.

• For the direct approach above using the variational form, we first discretised,
and then we used the necessary optimality condition.

5.2 Building the Bridge between Euler-Lagrange and Direct Optimi-
sation

In order to solve the nonlinear system (5.6a)for the state ∇uE∆(u) = 0 where

∇uE∆(u) =

(
∂

∂u1
E∆(u), . . . ,

∂

∂uN
E∆(u)

)⊤

, (5.9)

we may employ an iterative method such as

uk+1 = uk − γk∇uE∆(u), (5.10)

where γk is a parameter, and where we aim for a stationary case uk+1 = uk for all
k large enough. Can we derive expressions corresponding to such an iterative method
more directly by the energy functional?
Dealing with

E(u) =

∫

Ω

F (~x, u(~x),∇u(~x)) d~x, (5.11)

29

5 Numerical Treatment of Variational Problems II: Direct Optimisation
Approach

we need to find a gradient of a functional, i.e. we aim to find a derivative with respect
to elements u of an infinite dimensional function space, and not with respect to a
vector (u1, . . . , un)

⊤ with a finite number of entries.

Defining ∇uE:

From vector calculus, i.e., if u was a vector ~u = (u1, . . . , uN)⊤, we know that the
directional derivative in a direction ~ϕ is

∂E

∂ϕ
= lim

ε→0

E(~u+ ε~ϕ)− E(~u)

ε
= ∇~uE · ~ϕ, (5.12)

where the scalar product expands as

∇~uE · ~ϕ =
N∑

i=1

(∇~uE)iϕi. (5.13)

Using the same methodology, we use now functions u(~x) and ϕ(~x) instead of ~u and
~ϕ, respectively, and the scalar product

∇uE · ϕ =

∫

Ω

(∇uE)(~x)ϕ(~x) d~x, (5.14)

compare (5.13). Following then the derivation of the Euler-Lagrange equation in §2,
identifying

d

dt
g(t) =

d

dt
E(u+ tϕ) = lim

t→0

E(u+ tϕ)− E(u)

t
=: ∇uE, (5.15)

we arrive at

∇uE =
∂F

∂u
− div(F∇u(~x, u,∇u)). (5.16)

An iterative method can then modeled via the concept of artificial time,

∂u

∂t
= −∇uE, (5.17)

i.e., after discretisation of ∂u
∂t

by ∂u
∂t

=
un+1
j −un

j

∆t
we obtain

un+1
j = unj −∆t(∇uE)

∣
∣
∣
(xj ,tn)

. (5.18)

Summary

We now have at hand the approaches to deal with variational optimisation problems:

• the Euler-Lagrange equation plus its discretisation

• quadrature of the energy functional

• optimisation by iterative schemes

30

6 Descent Methods: An Introduction

Motivation

Descent schemes are widely used in areas related to visual computing tasks, e.g. in
machine learning for pattern recognition.

We begin with employing a broad perspective.

Descent methods are often employed for unconstrained minimisation problems. We
cast this in the form:

minimise f(x) (6.1)

where we will often assume:






f : Rn → R

f is convex

f is twice continuously differentiable

the problem is solvable

(6.2)

Remark: In variational formulations, we have E(~u) instead of f(x).
We will also discuss deviations from this setting. Since f is differentiable and convex,
a necessary and sufficient condition for a point x∗ to be optimal is

∇f(x∗) = ~0. (6.3)

Thus, solving (6.1) is the same as solving (6.3), where the latter is a system of n

equations in the n variables x1, . . . , xn.

We seek algorithms constructing a minimising sequence x(0), x(1), . . ., with

f(x(k)) → f(x∗) =: p∗ for k → ∞. (6.4)

The algorithm is terminated when

f(x(k))− p∗ ≤ ε, ε > 0 (6.5)

being a prescribed tolerance.

31

6 Descent Methods: An Introduction

Remark: We indirectly assume above that all generated points x(k) are allowed.

In general it is not assumed that f(x(k+1)) < f(x(k)) in a minimising sequence, only
the sequence shall converge to the minimiser, see (6.4). In a descent scheme, this is
different!

6.1 Generic Algorithm Formulation

The algorithms we describe shall produce a minimising sequence x(k) where

x(k+1) = x(k) + γkd
(k), (6.6)

and where γk > 0, except when x(k) is optimal. In (6.6), we denote

• d(k) ∈ R
n as the search direction

• γk ∈ R as the step size, or step length.

In a descent method we have

f(x(k+1)) < f(x(k)), (6.7)

except when x(k) is optimal.

A general descent method alternates between two steps: determining a descent direc-
tion d, and the selection of a step size γ.

Algorithm 6.1 (General descent method) • give a starting point x

• repeat

a) Determine descent direction d

b) Line search. Choose step size γ

c) Update. x := x+ γd

until stopping criterion is satisfied.

The second step is called ’line search’ since selection of the step size γ determines,
where along the onedimensional half-line {x+ γd | γ ∈ R+} the next iterate will be.

6.2 Basic Line Searching Strategies

There are two principle possibilities:

(i) Solve the 1-D line search problem exact.

(ii) Solve it inexact.

32

6.2 Basic Line Searching Strategies

An exact solver is sometimes adequate, if the computational cost of the 1-D minimi-
sation problem to minimise f along the {x+ γd | γ ≥ 0},

γ = argmin
s≥0

f(x+ sd), (6.8)

is low compared to computing the search direction itself. In special cases it may be
even possible to solve this 1-D problem analytically.

Most line searches used in practice are inexact. The step length is chosen to ap-
proximately minimise f along the ray {x + γd | γ ≥ 0}, or even to just reduce f

’enough’.

A popular inexact algorithm that is simple and effective is called backtracking line search.

It depends on two constants 0 < α < 1
2 , 0 < β < 1.

Algorithm 6.2 (Backtracking line search) • give a descent direction d for f

at x, α ∈ (0, 12), β ∈ (0, 1)

• set γ := 1

• while f(x+ γd) > f(x) + αγ∇f(x) · d
do γ := βγ.

The algorithm employs a convexity assumption. From convexity we know that

∇f(x) · (y − x) ≥ 0 ⇒ f(y) ≥ f(x), (6.9)

so the search direction in a descent method must satisfy

∇f(x) · d < 0, (6.10)

where ’·’ denotes the Euclidean scalar product. This means d must make an acute
angle (’spitzer Winkel’) with −∇f(x). We call such a direction d with (6.10) a
descent direction.

The line search algorithms above is called backtracking because it starts with unit step
size and then reduces it by a factor β until the stopping condition

f(x+ γ∆x) ≤ f(x) + αγ∇f(x) · d (6.11)

holds. Since d is a descent direction, (6.10) applies, so for small angle γ we have

f(x+ γd) ≈ f(x) + γ∇f(x) · d (linearisation !) (6.12)

α∈(0, 1
2
)

< f(x) + αγ∇f(x) · d

which shows that the algorithm eventually terminates. The constant α can be inter-
preted as the fraction of the decrease in f predicted by linear extrapolation that we
will accept, see sketch.

33

6 Descent Methods: An Introduction

Sketch

Typical parameter choices in the literature are

0.01 ≤ α ≤ 0.3 and 0.1 ≤ β ≤ 0.8. (6.13)

Remark: The derivation of the scheme also works just by relying on −∇f(x) as the
steepest descent direction. By making use of (6.9) we see that there is a relation to
the convexity of f .

34

7 Basic Order Line Search

Recall the following minimisation task: We seek a minimising sequence x(k) where

x(k+1) = x(k) + γkd
(k),

and where γk > 0, except when x(k) is optimal. In (6.6), we denote

• d(k) ∈ R
n as the search direction

• γk ∈ R as the step size, or step length.

In a descent method we have

f(x(k+1)) < f(x(k)),

except when x(k) is optimal.

Motivation

By line search, straightforward algorithms can be constructed for many problems in
Visual Computing. Also, it is a building block in many more advanced methods.

In this paragraph, we aim to fix useful search directions d of the general descent algo-
rithm, complementing §6.

Mathematical Tool: We will rely very much on Taylor series expansions for functions
of more than one variable. This works as follows. Given a function f(x, y), with
f : R2 → R, the Taylor series to second order about the point (a, b)⊤ is:

f(x, y) ≈ f(a, b) + (x− a)fx(a, b) + (y − b)fy(a, b) (7.1)

+
1

2
[(x− a)2fxx(a, b) + 2(x− a)(y − b)fxy(a, b) + (y − b)2fyy(a, b)]

We neglected higher order terms in (7.1). Using ~x := (x, y)⊤ and ~a := (a, b)⊤, we
can write (7.1) in a more compact format:

f(~x) ≈ f(~a) + (~x− ~a)⊤Df(~a) +
1

2
(~x− ~a)⊤D2f(~a)(~x− ~a). (7.2)

35

7 Basic Order Line Search

Thereby, Df(~a) and D2f(~a) denote the gradient and the (symmetric) Hessian matrix
of f , respectively:

Df(~a) ≡ ∇f(~a) =






∂

∂x
f(~a)

∂

∂y
f(~a)




 , (7.3)

D2f(~a) = Hf(~a) :=







∂2

∂x2
f(~a)

∂2

∂x∂y
f(~a)

∂2

∂y∂x
f(~a)

∂2

∂y2
f(~a)







This procedure can be extended to f : Rn → R straightforwardly.

We will often use the compact form to write down formulae. Also, the use of the
Hessian matrix allows useful theoretical investigations.

The Gradient Descent Method

If f : Rn → R, ~x = (x1, . . . , xn) 7→ f(~x), is defined and differentiable in a neighbour-
hood of ~a ∈ R

n, then f decreases fastest if one goes from ~a in the direction of the
negative gradient of f in ~a: −∇f(~a).

Thus, if we set

~b := ~a− γ∇f(~a) (7.4)

for γ > 0 a small enough number, then f(~b) ≤ f(~a). Implementing this idea as an
iterative scheme, the gradient descent method defines a sequence ~x0, ~x1, . . . , with

~xk+1 = ~xk − γk∇f(~xk), k = 0, 1, 2, (7.5)

We then have f(~x0) ≥ f(~x1) ≥ f(~x2) ≥ . . ., so hopefully (~xk)k≥0 converges to the
desired (local) minimum. Note, that γk is allowed to change every iteration.

36

Sketch:

4
2

0
0
0

2

2

4

6

-2 4

8

6

10

-4 8 10

~x0

~x1

~x2

~x3

contour lines a.k.a.

level sets of f

Remarks

(i) Obviously, if f is strictly convex, (7.5) yields the global minimum.

(ii) At a local minimum, ∇f = ~0, the iteration (7.5) becomes stationary.

Relation to variational problems, Part I

It is easiest to see that we actually have employed a gradient descent method by
interpreting the result of §5.1. Consider E∆(u) as a scalar-valued function of u =

37

7 Basic Order Line Search

(u1, . . . , uN)⊤. Then the above methodology reads as

uk+1 = uk − γk∇uE∆(u), (7.6)

where

∇uE∆(u) =

(
∂

∂u1
E∆(u), . . . ,

∂

∂uN
E∆(u)

)⊤

(7.7)

Comparing (7.6)-(7.7) with (5.5)-(5.6a) we see that the latter can be written in the
form of a gradient descent method.

Algorithm 7.1 (Gradient descent line search) • give a starting point x

• repeat

(a) d := −∇f(x)

(b) Ray search. Choose step size γ.

(c) Update. x := x+ γd

until stopping criterion is satisfied.

7.1 Newton’s method

The well-known Newton method for finding zeros of a ’completely scalar function’ can
also be employed for minimising a function f : Rn → R. This works as described in
this paragraph.

Employing the Taylor expansion of f(x) in a point x(k) ∈ R
n leads to the approximate equality

f(x)
︸︷︷︸

∈R

= f(x(k))
︸ ︷︷ ︸

∈R

+∇f(x(k))
︸ ︷︷ ︸

∈Rn

· (x− x(k))
︸ ︷︷ ︸

∈Rn

+
1

2
(x− x(k))
︸ ︷︷ ︸

∈Rn

· [Hf(x(k))
︸ ︷︷ ︸

∈Rn×n

(x− x(k))
︸ ︷︷ ︸

∈Rn

]

︸ ︷︷ ︸

∈Rn

(7.8)

Let us stress, that x(k) ∈ R
n is a fixed, chosen point, so that f(x(k)), ∇f(x(k)) and

Hf(x(k)) are constant in (7.8).

Differentiating (7.8), i.e. applying the ∇-operator on both sides of the equation, we
obtain

∇f(x) = ∇f(x(k)) + Hf(x(k)) · (x− x(k)). (7.9)

Enforcing the necessary optimality condition ∇f(x∗) = 0 in a local minimum x = x∗,
(7.9) gives

Hf(x(k))(x− x(k)) = −∇f(x(k)), (7.10)

38

7.1 Newton’s method

i.e.,

x = x(k) − [Hf(x(k))]−1∇f(x(k)). (7.11)

As we neglected higher order terms in (7.8)-(7.11), the point x ∈ R
n computed via

(7.11) only approximates the minimum, but we can employ it in an iterative procedure:

x(k+1) = x(k) − [Hf(x(k))]−1∇f(x(k)). (7.12)

The method (7.12) is sometimes called Newton’s scheme without stepsize control.

Comparing (7.12) to (6.6), we can interprete Newton’s method as a line searching
algorithm with

d(k) := −[Hf(x(k))]−1∇f(x(k)). (7.13)

Because of Hf , it is a second order line searching method.

Algorithm 7.2 (Newton’s method) • give a starting point x

• repeat

(a) d := −[Hf(x)]−1∇f(x).

(b) Ray search. Choose step size γ.

(c) Update. x := x+ γd

until stopping criterion is satisfied.

Remark: Although we cast Newton’s method by (7.12)-(7.13) in the format of a descent
scheme, the related property (6.10) is not automatically satisfied.

39

8 The Trust Region Method

Motivation

Is there a line search scheme for ’difficult’ optimisation problems?

The strictly convex problem solved by Newton’s method is given by minimising

q(x) := f(x(k)) +∇f(x(k)) · (x− x(k)) +
1

2
(x− x(k)) · Hf(x(k))(x− x(k)) (8.1)

Strict convexity means: Hf(x(k)) needs to be positive definite (PD).

Question: What if the Hessian Hf is not PD ?

We recall the condition for having a descent direction by a vector ~s:

∇f(x) · ~s(x) < 0. (8.2)

Now, let ~s := −[Hf]−1∇f as in Newton’s method. Then ~s is a descent direction, i.e.

∇f · ~s = −∇f · [Hf]−1∇f
!
< 0, (8.3)

if and only if [Hf]−1 (and thus Hf) is PD. That is why a PD Hessian is needed for
Newton’s method.

Important observation by (8.3): Any PD matrix A with

~s := −A∇f (8.4)

gives a descent direction.

We make use of this observation as follows. If the Hessian in q(x) from (8.1) is not
PD then we perturb it to be PD, and we minimise

Q(x) = f(x(k)) +∇f(x(k)) · (x− x(k)) +
1

2
(x− x(k)) · (Hf(x(k)) + αI)(x − x(k)),(8.5)

where I is the identity matrix. One easily derives

Q(x) = q(x) +
α

2
‖x− x(k)‖22 (8.6)

41

8 The Trust Region Method

and accordingly the descent direction of the Trust Region (TR) method is

s(k)(α) = −[Hf(x(k)) + αI]−1∇f(x(k)) (8.7)

Then x(k)+s(k)(α) minimises Q(x), but we want a decrease in q(x) as well, since q(x)
is nothing else but the Taylor expansion up to second order of our objective function
f .

We have:

Q(x(k) + s(k)(α)) ≤ Q(x)

(known to be true!)

(8.6)
⇔ q(x(k) + s(k)(α)) + α

2 ‖s
(k)(α)‖22 ≤ q(x) +

α

2
‖x− x(k)‖22,

(true by eq.) (8.8)

⇔ q(x(k) + s(k)(α)) + α
2 (‖s

(k)(α)‖22 − ‖x− x(k)‖22) ≤ q(x) (8.9)

(true by equivalence)

The latter inequality implies that

q(x(k) + s(k)(α)) ≤ q(x) (8.10)

in case of

‖s(k)(α)‖22 −
α

2
‖x− x(k)‖22 ≥ 0, (8.11)

i.e. if

‖x− x(k)‖2 ≤ ‖s(k)(α)‖2 =: rα. (8.12)

We have to understand (8.10)-(8.12) as follows. We aim to minimise q(x), and we can
do this by using x(k) + s(k)(α), see (8.10). However, as the condition (8.12) shows,
this minimising effect only holds within a certain neighbourhood x of x(k). This is the
“trust region”.

Note that x(k) is just the current iterate in the k-th step, and we can employ such a
construction for all k.

Let us discuss rα from (8.12).

Lemma 8.1 For suitable α, rα is a non-increasing function of α.

Proof:

Let z1, . . . , zn be an orthonormal eigenvector system of Hf(x(k)) and where the ordered
eigenvalues of Hf(x(k)) are µ1, . . . , µn. Further, let

∇f(x(k)) =
n∑

i=1

cizi. (8.13)

42

Let us remember, that the equation determining eigenvalues/-vectors shows:

Ax = λx ⇔ x = λA−1x ⇔ A−1x =
1

λ
x, (8.14)

i.e. A and A−1 have the same eigenvectors with reciprocal eigenvalues. In the same
way we obtain

(Hf + αI)zi = (µi + α)zi ⇔ (Hf + αI)−1zi =
1

µi + α
zi (8.15)

Thus:

rα = ‖s(k)(α)‖2 = ‖ − [Hf(x(k)) + αI]−1∇f(x(k))‖2

(8.13)
= |−1|

∥
∥
∥
∥
∥

n∑

i=1

ci[Hf(x
(k)) + αI]−1zi

∥
∥
∥
∥
∥
2

(8.15)
=

∥
∥
∥
∥
∥

n∑

i=1

ci

µi + α
zi

∥
∥
∥
∥
∥
2

=

√
√
√
√

(
n∑

i=1

ci

µi + α
zi

)

·

(
n∑

i=1

ci

µi + α
zi

)

(zi
orthonormal

basis)
=

√
√
√
√

n∑

i=1

|ci|
2

|µi + α|2
,

i.e. in summary

rα =

√
√
√
√

n∑

i=1

|ci|
2

|µi + α|2
. (8.16)

For suitable α, which means µi+α > 0 for all i = 1, . . . , n must hold, (8.16) is clearly
non-increasing in α

2.

Remarks:

(i) The bigger the α, the smaller the step.

(ii) Note that the condition µi + α > 0 implies that Hf(x(k)) + αI is PD.

43

8 The Trust Region Method

Sketch

The TR direction is a compromise between the gradient and Newton direction. If α = 0
we have the Newton step, as α → ∞ we approach a small multiple of −∇f(x(k)).

Summary: If the objective function f(x) is not strictly convex or even non-convex, or
if the Hessian, is ill-conditioned, the TR method should be used.

44

9 Convexity of Objective Functions

Motivation

Can we assess useful properties of optimisation schemes?

We will assume, that the objective function f(x) is strictly convex. This assump-
tion seems to be reasonable, since many algorithms rely on ‘convexifying’ the original
problem.

We recall the optimality condition

∇f(x∗) = ~0, (9.1)

where p∗ = f(x∗) is optimal. We distinguish convexity conditions of first and second
order for a point set x ∈ D.

9.1 First order convexity condition

The function f is convex on S if and only if

f(y) ≥ f(x) +∇f(x) • (y − x) for all x, y ∈ S, (9.2)

see sketch.

The meaning of (9.2) is that we can infer from local information about a convex
function (i.e. from its value f(x) and derivative ∇f(x)) a global information over S,

45

9 Convexity of Objective Functions

i.e.

f(x) +∇f(x) • (y − x) (9.3)

is a global underestimator for all y ∈ S. In particular, if ∇f(x) = 0, (9.2) shows that
f(y) ≥ f(x) for all y ∈ S.

9.2 Second order convexity condition

The geometrix requirement that f has a non-negative curvature if it is convex is
encoded in the PSD (positive semidefinite) property of the Hessian matrix:

Hf(x) � 0 for all x ∈ S. (9.4)

In the case of strict convexity and Hf being PD (positive definite), it even holds

Hf(x) � c1I for all x ∈ S, (9.5)

where c1 > 0.

9.3 Consequences of Convexity Conditions

Let us recall the Taylor series expansion

f(y) = f(x) +∇f(x) • (y − x) +
1

2
(y − x) • Hf(x)(y − x) + . . . (9.6)

which one can make specific as by the formula for the remainder with z ∈ {x+t(y−x) |
t ∈ (0, 1)}

f(y) = f(x) +∇f(x) • (y − x) +
1

2
(y − x) • Hf(x)(y − x) (9.7)

for some z on the line segment [x, y]. By (9.5), the last term is at least c1
2 ||y − x||22,

so that

f(y) ≥ f(x) +∇f(x) • (y − x) +
c1

2
||y − x||22. (9.8)

For c1 = 0, we recover the first order condition (9.2). For c1 > 0, we obtain a better
lower bound on f(y) than by (9.3).

We now show that the inequality (9.8) can be used to bound f(x) − p∗, and this is
the suboptimality of the point x in terms of ||∇f(x)||2. We consider the right hand
side of (9.8). Setting the gradient with respect to y equal to zero, we find that

ỹ = x−
1

c1
∇f(x) (9.9)

46

9.3 Consequences of Convexity Conditions

minimises it. Therefore we have

f(y) ≥ f(x) +∇f(x) • (y − x) +
c1

2
‖y − x‖22

≥ f(x) +∇f(x) • (ỹ − x) +
c1

2
‖ỹ − x‖22

(9.9)= f(x)−∇f(x) •

(
1

c1
∇f(x)

)

︸ ︷︷ ︸

=− 1
c1

‖∇f(x)‖22

+
c1

2
|−1| ·

∥
∥
∥
∥

1

c1
∇f(x)

∥
∥
∥
∥

2

2
︸ ︷︷ ︸

1

c2
1
‖∇f(x)‖22

,

i.e.

f(y) ≥ f(x)−
1

2c1
‖∇f(x)‖22. (9.10)

Since this holds for any y ∈ S, we have

p∗ ≥ f(x)−
1

2c1
‖∇f(x)‖22. (9.11)

The latter inequality shows that if ∇f(x) is small at a point, then the point is nearly
optimal. Thus, (9.11) can be interpreted as a condition for suboptimality which gen-
eralises (9.1):

‖∇f(x)‖22 ≤ (2c1 · ε)
1
2 ⇒ f(x)− p∗ ≤ ε. (9.12)

Remark

One may use (9.12) as a stopping criterion. However, c1 is in general not known. We
can only infer from (9.12) that for ||∇f(x)||2 ≤ η, where η is (very likely) smaller

than (2c1 · ε)
1
2 , then we have f(x)− p∗ ≤ ε (very likely).

47

10 Convex Functions and Convex

Sets

10.1 Condition number of sublevel sets

Recall the convexity conditions

f(y) ≥ f(x) +∇f(x) • (y − x) for all x, y ∈ S, (10.1)

and

Hf(x) � c1I for all x ∈ S (10.2)

plus the resulting inequality

f(y) ≥ f(x) +∇f(x) • (y − x) +
c1

2
||y − x||22. (10.3)

Strong Convexity Effects

Assuming that methods of interest are descent methods making use of a starting point
x(0), we introduce the sublevel set

S = {x ∈ D | f(x) ≤ f(x(0))}, (10.4)

on which our methods act.

The inequality of (10.3) implies that the sublevel sets contained in S are bounded, i.e.
also S is bounded. Therefore the maximum eigenvalue of Hf(x), which is a continuous
function of x on S, is bounded via

Hf(x) � c2I for all x ∈ S, (10.5)

where c2 > c1 is a constant. Summarising (10.2) and (10.5), we have

c1I � Hf(x) � c2I for all x ∈ S. (10.6)

The ratio κ := c2
c1

is thus an upper bound on the condition number of the matrix Hf(x),
i.e. on the ratio of its largest eigenvalue to its smallest eigenvalue.

49

10 Convex Functions and Convex Sets

We can also interpret (10.6) geometrically in terms of the sublevel sets of f , which we
show now.

We define the width of a convex set C ⊆ R
n, in the direction q, where ‖q‖2 = 1, as

W (C, q) := sup
z∈C

q • z − inf
z∈C

q • z. (10.7)

The minimum and maximum width of C are given by

Wmin := inf
‖q‖2=1

W (C, q), Wmax := sup
‖q‖2=1

W (C, q). (10.8)

The condition number of the convex set C is then defined as

cond(C) =
W 2

max

W 2
min

, (10.9)

i.e. the square of the ratio is its maximum width to its minimum width.

The number cond(C) measures its anisotropy or eccentricity. If it is near one, then C

is nearly spherical, if it is large, then C is far wider in one direction than in others.

We will now derive a bound on the condition number of the α-sublevel set

Cα = {x|f(x) ≤ α}, where p∗ < α < f(x(0)). (10.10)

By (10.5), we get in the same way that lead to (10.3) the estimate

f(y) ≤ f(x) +∇f(x) • (y − x) +
c2

2
‖y − x‖22. (10.11)

Together with (10.3), for x = x∗ we have

p∗ +
c2

2
‖y − x∗‖22

(10.11)

≥ f(y)
(10.11)

≥ p∗
c1

2
‖y − x∗‖22. (10.12)

This shows, that the α-sublevel set contains a ball Binner, and is contained in a ball
Bouter, with radii

rinner =

√
2

c2
(α − p∗), router =

√
2

c1
(α− p∗), (10.13)

respectively. The ratio of the radii squared gives an upper bound on the condition
number of Cα:

cond(Cα) ≤
c2

c1
. (10.14)

We can now give a geometric interpretation of the condition number of the Hessian
matrix at the optimum. From the Taylor series expansion of f around x∗,

f(y) ≈ p∗ +
1

2
(y − x∗) • Hf(x∗)(y − x∗), (10.15)

50

10.2 Analysis of Gradient Descent

we obtain for α close to p∗

Cα ≈ {y | (y − x∗) • Hf(x∗)(y − x∗) 6 2(α − p∗)}, (10.16)

i.e. the sublevel set is well approximated by an ellipsoid with center at x∗. Therefore

lim
α→p∗

cond(Cα) = cond(Hf(x∗)). (10.17)

We will see that the condition number of the sublevel sets of f has a strong effect on
the efficiency of schemes.

10.2 Analysis of Gradient Descent

We consider for simplicity the gradient descent scheme with an exact line search. The
scheme then reads as

x(k+1) = x(k) + γ(k)(−∇f(x(k))). (10.18)

Recalling (10.11), i.e.

f(y) ≤ f(x) +∇f(x) • (y − x) +
c2

2
‖y − x‖22, (10.19)

we obtain for x := x(k) and y := x(k) − γ∇f(x(k)) a quadratic upper bound on
f̃(γ) := f(x(k) − γ∇f(x(k))) :

f̃(γ) ≤ f(x(k))− γ‖∇f(x(k))‖22 +
c2 · γ

2

2
‖∇f(x(k))‖22. (10.20)

Minimising both sides with respect to γ gives

f(x(k+1)) = f̃(γexact) ≤ f(x(k))−
1

2c2
‖∇f(x(k))‖22. (10.21)

Subtracting p∗ from both sides gives

f(x(k+1))− p∗ ≤ f(x(k))− p∗ −
1

2c2
‖∇f(x(k))‖22. (10.22)

Employing then the suboptimality condition (9.8) in the form

‖∇f(x(k))‖22 ≥ 2c1(f(x
(k))− p∗) (10.23)

we obtain from (10.22):

f(x(k+1))− p∗ ≤ (1−
c1

c2
)(f(x(k))− p∗). (10.24)

With

c := 1−
c1

c2
< 1 (10.25)

51

10 Convex Functions and Convex Sets

we get by a recursive application of (10.24):

f(x(k))− p∗ ≤ c · . . . · c
︸ ︷︷ ︸

ktimes

·(f(x(0))− p∗) (10.26)

which shows the convergence of the method. In particular, we must have f(x(k))−p∗ ≤
ε if

ck(f(x(0))− p∗)
!
≤ ε. (10.27)

Solving (10.27) for k shows that at most

log(f(x
(0))−p∗

ε
)

log(1
c
)

(10.28)

iterations are needed.

Let us remark that the numerator in (10.28)

log
f(x(0))− p∗

ε
(10.29)

can be interpreted as the log of the ratio of the initial suboptimality (i.e. ε). This
term suggests that the number of iterations depends on the starting point.

The denominator log(1
c
) is a function of c2

c1
, see (10.25). Thus it is related to the

bound on the condition number of the matrix Hf(x) over S, or of the sublevel sets
{z | f(z) ≤ α}, respectively. For a large condition number bound c2

c1
, we have

log(
1

c
) = − log

(

1−
c1

c2

)

≈
c1

c2
, (10.30)

so that the number of iterations increases approximately linearly with increasing c2
c1

.

Summary

• The efficiency of a stopping criterion depends on the curvature of the objective
function.

• The efficiency of a scheme depends on the relation of the search direction to the
shape of sublevel sets of the objective function.

52

11 Constrained Optimisation

Motivation

How can we deal with constraints in a minimizing process?

Mathematical model of the underlying problem
("nonlinear programming problem (NLPP)")







Minimisef(x)

subject to the constraints

gi(x) ≤ 0, i = 1, . . . ,m;

hj(x) = 0, j = 1, . . . , p

(11.1)

Given constraints have to be transformed in advance into the formats gi(x) ≤ 0 for
inequality constraints, and hj(x) = 0 for equality constraints, respectively.

Two main strategies are available:

• use information from optimality conditions
⇒ techniques: dual method, augmented Lagrangian algorithms

• not use information from optimality conditions
⇒ techniques: penalisation and barrier methods

Key idea:

Can we incorporate constraints into an easy-to-solve, unconstrained model, which
delivers the solution of the constrained problem?

11.1 Penalisation and Barrier Methods

Idea: Infeasible values/vectors are prohibited, or at least penalised.

53

11 Constrained Optimisation

Basic set-up:







Minimise f(x) + f̃(x),

where f̃(x) =

{

0, gi(x) ≤ 0, hj(x) = 0, ∀i, j

+∞, otherwise.

(11.2)

Prohibited vectors x̂ are eliminated in this set-up from the minimisation process via
the contribution f̃(x̂) = +∞ in the cost function.

Problem statement:

f + f̃ is not continuous, as it can take on the value +∞ abruptly.

Solution No.1 - Penalisation methods

We assign not an infinite cost to an infeasible vector, but we penalise it, thus „discour-
aging“ it to be part of the solution.

One of the most popular families of penalisations is

f̃r(x) = r





m∑

i=1

max{0, gi(x)}
l +

l∑

j=1

|hj(x)|
q



 , (11.3)

where l, q ≥ 1 are exponents and r ≥ 1 is a penalisation parameter.

Remarks

• If l > 1, the function max{0, gi(x)}
l is differentiable if gi(x) is.

• A typical setting is the quadratic penalisation corresponding to l = q = 2.

Solution No.2 - Barrier methods

Example for choosing f̃ :

f̃r(x) = −
1

r

m∑

i=1

1

gi(x)
. (11.4)

Moving toward the boundary of a feasible set, gi(x) becomes close to zero, and so
f̃r(x) becomes large, placing a barrier at the boundary between feasible and infeasible
vectors (where f̃r(x) formally reaches +∞).

54

11.2 Lagrange Multiplier

For constraints of the form hj(x) = 0, one possibility is to add

r3
p
∑

j=1

hj(x)
2

1− r2hj(x)2
(11.5)

to f̃r(x).

Penalisation vs. Barrier methods

• in penalisation methods, iterates of x are penalised outside the set of feasible
vectors.

• in barrier methods, iterates of x are penalised inside the set of feasible points.

• barrier methods rely on a starting vector x(0) inside the feasible set.

11.2 Lagrange Multiplier

Let us consider the reduced problem

Minimize f(x) under h(x) = 0. (11.6)

Let us have a look at parametrised curves

τ : (−δ, δ) → R
n, δ > 0, (11.7)

whose image τ(−δ, δ) is entirely contained in the feasible set of our optimisation
problem, i.e.

h(τ(t)) = 0, ∀t ∈ (−δ, δ) (11.8)

If we suppose that x0 ∈ R
n is a point of local minimum or maximum, or even a

saddle point, and assume that τ passes through x0 for t = 0, τ(0) = x0, then the
composition f(τ(t)) must likewise have a local extremum or saddle point for t = 0.
In any of these cases, we must have a vanishing first derivative:

0 =
df(τ(t))

dt

∣
∣
∣
∣
t=0

= ∇f(τ(0))
︸ ︷︷ ︸

∈Rn

· τ ′(0)
︸ ︷︷ ︸

Rn

= ∇f(x0) · τ
′(0) (11.9)

On the other hand, since h(τ(t)) ≡ 0 for all t of interest, we should also have

0 = ∇h(x0) · τ
′(0) (11.10)

as the gradient of the zero function, see (11.8), is zero. Since the tangient vector
τ ′(0) is arbitrary, the equalities (11.9) and (11.10) can both hold if and only if ∇f(x0)
belongs to the span of ∇h(x0), i.e.

∇f(x) + λ∇h(x) = 0, (11.11)

and the pair (x, λ) consists of the unknowns.

55

11 Constrained Optimisation

Sketch

h :

∇h

∇f

h(x) = 0

level sets of f

11.3 Augmented Lagrangian algorithms

We consider for motivation only the problem

Minimise f(x) under h(x) = 0. (11.12)

We know that solutions must satisfy

∇f(x) + λ∇h(x) = 0, (11.13)

for an appropriate multiplier λ. Assuming that we have an approximate value λj , we
now show how we can use this

• to find the corresponding optimal solution xj , and to

• simultaneously improve the approximation of the multiplier to proceed iteratively
to λj+1.

Starting with

Minimise f(x) + λjh(x) under h(x) = 0, (11.14)

(j iteration index) we introduce a quadratic penalizer and treat instead the problem

Minimise f(x) + λjh(x) +
rj

2
|h(x)|2 (11.15)

for some parameter rj. The optimality condition for the latter is

∇f(x) + λj∇h(x) + rjh(x)∇h(x) = 0. (11.16)

Assuming that xj is „good“ , it must be close to the true optimal solution x.

Comparison of the optimality conditions (11.13) and (11.16) leads to

λj + rjh(xj) ≈ λ. (11.17)

With a number 0 < c < 1, this idea yields the sought algorithm class using

λj+1 := λj + rjh(xj), rj+1 := crj . (11.18)

56

12 Duality in Constrained

Optimization

Let us recall the model problem






Minimisef(x)

subject to the constraints

gi(x) ≤ 0, i = 1, . . . ,m;

hj(x) = 0, j = 1, . . . , p

(12.1)

We define the Lagrangian

L : Rn × R
m ×R

p → R (12.2)

associated with (12.1) as

L(~x, ~µ,~λ) = f(~x) +

m∑

i=1

µigi(~x) +

p
∑

j=1

λj · hj(~x), (12.3)

where µi ≥ 0.

We refer to the µi and the λj as the Lagrangian multiplier or dual variables. We define
the Lagrange dual function as

Θ(~µ,~λ) = inf
~x

L(~x, ~µ,~λ) (12.4)

Remark: Since Θ(~µ,~λ) is the pointwise infimum of a family of affine functions of (~µ,~λ),
it can be shown to be convex, even if the original problem (12.1) is not convex.

The lower bound property

The dual function gives lower bounds on the optimal value ~p∗ of (12.1). Suppose ~x∗

is feasible, i.e. it satisfies the constraints, then

L(~x∗, ~µ,~λ) = f(~x∗)
︸ ︷︷ ︸

=~p∗

+

m∑

i=1

µi
︸︷︷︸

≥0

gi(~x
∗)

︸ ︷︷ ︸

≤0
︸ ︷︷ ︸

≤0

+

p
∑

j=1

λj hj(~x
∗)

︸ ︷︷ ︸

=0

(12.5)

57

12 Duality in Constrained Optimization

and thus

Θ(~µ,~λ) ≤ p∗ (12.6)

This motivates

Definition 12.1 The difference

min{f(~x) | gi(~x) ≤ 0, hj(~x) = 0 ∀i, j} −max{Θ(~µ,~λ) | µi ≥ 0 ∀i, j} (12.7)

is called duality gap. When there is no such gap, the primal problem (12.1) is equiva-
lent to the dual problem

{

Maximise Θ(~µ,~λ)

subject to µi ≥ 0, i = 1, . . . ,m.
(12.8)

This situation is refered to as strong duality.

Remarks

(i) If f and g are convex and h is affine, the primal problem and the dual problem
are equivalent.

(ii) One may try to use the lower bound property to construct a stopping criterion.

Linear approximation interpretation

Let us rewrite the primal problem (12.1):

Minimise f(~x) +
m∑

i=1

Im(gi(~x)) +

p
∑

j=1

I0(hj(~x)), (12.9)

where Im : R → R is the indicator function for the non-positive reals,

Im(a) =

{

0, a ≤ 0

+∞ a > 0,
(12.10)

and similarly, I0 is the indicator function of {0}. In the formulation (12.9), the function
Im(a) expresses our displeasure associated with a constraint function value a = gi(~x):
It is zero, if gi(~x) ≤ 0, and infinite if gi(~x) > 0.

Analogously, I0(a) gives our displeasure for a violated equality constraint a = hj(~x).

These are „hard“ displeasure functions, since our displeasure rises directly from zero to
infinity.

58

12.1 Karush-Kuhn-Tucker (KKT) optimality conditions

Now we replace in (12.9) the function Im(a) with the linear function µi · a, where
µi ≥ 0 and I0(a) with λj · a. The objective function in (12.9) then becomes the

Lagrangian L(~x, ~µ,~λ), and the dual function is the optimal value of the problem

Minimise L(~x, ~µ,~λ). (12.11)

Thus, the meaning of the Lagrangian involves a linear or „soft“ displeasure function
instead of Im(a) and I0(a). The displeasure grows as the constraints become more
„more violated“.

Note that unlike the original formulation, in which any x with gi(~x) ≤ 0 is just
acceptable, in the soft formulation we actually derive pleasure from gi < 0 as this
contributes to minimise L(x, ~µ,~λ). That is why we need to maximise Θ(~µ,~λ) in
(12.8).

12.1 Karush-Kuhn-Tucker (KKT) optimality conditions

Consider now the „full“ problem (12.9). Starting from strong duality, i.e. with gi(~x) =
0, we obtain at a local minimum ~x0

∇f(~x0) +

m∑

i=1

µi∇gi(~x0) +

p
∑

j=1

λj∇hj(~x0) = 0. (12.12)

Furthermore, µi ≥ 0 as usual. The intuitive reason is, that f shall attain a minimum
at ~x0 but g(~x) has a maximum as g(~x) = 0 is the maximum value g should attain.
Hence, ∇f and ∇g at ~x0 must „point in different directions“.
This yields

Theorem 12.1 If ~x is a optimal solution and strong duality holds, then there exists
a vector of multipliers (µ, λ) such that







∇f(~x) +
∑m

i=1 µi∇gi(~x) +
∑p

j=1 λj∇hj(~x) = 0

µigi(~x) = 0

µi ≥ 0, gi(~x) ≤ 0, h(~x) = 0.

(12.13)

These necessary conditions are the KKT conditions.

Remark: For m conditions gi(~x) ≤ 0 and p conditions hj(~x) = 0, we thus obtain in

R
n a system of n+m+ p equations in the n+m+ p unknowns (~x, ~µ,~λ).

Summary

• Using the Lagrangian, we can often simplify, or reformulate, a constrained opti-
misation problem.

• The dual problem can be used to derive alternative algorithms, construct stop-
ping criteria, or for theoretical purposes.

59

13 The Bregman Iteration

Motivation

• How can one construct efficient methods for some difficult problems?

• Examples where Bregman iteration is used: TV denoising, deconvolution, com-
pressed sensing, machine learning, . . .

The tool investigated here is based on the notion of the Bregman distance, or Bregman divergence.
To construct this, consider an objective function

{

f : D → R,D some domain

f strictly convex
(13.1)

Let x, y ∈ R
n be two points in D. Linearising f via a Taylor series expansion around

y gives

Lf,y(ξ) := f(y) + (ξ − y) • ∇f(y), ξ ∈ R
n. (13.2)

Evaluating Lf,y at x ∈ R
n and comparing this linearised form with f(x) gives the

Bregman distance:

Bf (x, y) = f(x)− f(y)− (x− y) • ∇f(y). (13.3)

One should be careful with this notion, as this distance is not symmetric: In general

Bf (x, y) 6= Bf (y, x). (13.4)

13.1 Bregman Distance and Duality

The Bregman distance may find application in dual formulations of optimisation prob-
lems. The key notion in this context is the notion of a convex conjugate function.

For a function f taking values on the extended real numbers,

f : D → R ∪ {+∞}, (13.5)

the convex conjugate function f∗(x∗) is defined by

f∗(x∗) := sup
x
{x∗ • x− f(x)|x ∈ D} (13.6)

61

13 The Bregman Iteration

or, equivalently by

f∗(x∗) := inf
x
{f(x)− x∗ • x|x ∈ D} (13.7)

Remarks

a) This operation is order-reversing, i.e. if f ≤ g (pointwise), then f∗ ≥ g∗ (point-
wise).

b) f∗ is sometimes called the Fenchel-Legendre-transform of f .

We also rely on the notion of the proper convex function. A function f : D → R

satisfies this notion if it is convex and takes values in the extended real numbers such
that

{

f(x) < ∞ for at least one x, and

f(x) > −∞ for every x.
(13.8)

A proper convex function has the property that one can find b ∈ R
n and β ∈ R with

f(x) ≥ x · b− β ∀x. (13.9)

Analogously, we can define proper concave functions.

Then one can show the following results:

Theorem 13.1 (Fenchel’s duality theorem) For f proper convex and g proper
concave, it holds

min
x

(f(x)− g(x)) = maxp(g
∗(p)− f∗(p)) (13.10)

Theorem 13.2 (Fenchel-Young inequality) For any proper convex f holds

p · x ≤ f(x) + f∗(p). (13.11)

Concerning the Bregman distance, one can show the dual symmetry relation:

Bf∗(x∗, y∗) = Bf (y, x), (13.12)

where x∗ = ∇f(x) is the dual point corresponding to x.

13.2 Application to TV Denoising

We consider here the Rudin-Osher-Fatemi (ROF) model for total variation (TV) de-
noising, which has received much attention in the last years.

62

13.2 Application to TV Denoising

The mathematical model reads as

u = argmin
u

∫

Ω

|∇u|+
λ

2
‖Ku− f‖22d~x, (13.13)

where ~x = (x1, x2)
⊤, and where Ω is the domain of a given image f , λ ∈ R is a

parameter, and K ∈ R
n×n is matrix that is often set as K := I for TV denoising.

The part
∫

Ω

|∇u|d~x (13.14)

where

|∇u| =

2∑

i=1

|∂xi
u|, (13.15)

constitutes the total variation norm. The non-differentiability of the latter leads to
significant numerical problems.

A useful way to deal with the non-differentiability is to introduce a new variable to
separate the calculation of the non-differentiable term and the fidelity term. In this
way, the model (13.13) can be made equivalent to







u = argmin (u,q)

∫

Ω|q|+
λ
2‖Ku− f‖22d~x

under the contraint q =

(

q1

q2

)

=

(

∂x1u

∂x2u

)

= ∇u.
(13.16)

In order to make an unconstrained problem out of the constrained formulation (13.16),
we add a penalty term, cf. §12, to the objective function:

u = argmin
(u,q)

∫

Ω

|q|+
λ

2
‖Ku− f‖22 +

µ

2
‖q −∇u‖22d~x (13.17)

However, we need a way of modifying the problem (13.17) to get the exact enforcement
of the constraint. Grouping the first two energy terms together,

E(u, p) :=

∫

Ω

|q|+
λ

2
‖Ku− f‖22d~x, (13.18)

we write

u = argmin
(u,q)

E(u, q) +
µ

2

∫

Ω

‖q −∇u‖22d~x. (13.19)

We now treat (u, q) as one vector, writing for formal purposes ~η := (u, q)⊤. Then the
Bregman distance of the convex functional E(u, q) = E(~η) reads as:

BE(~η, ~ξ) = E(~η)− E(~ξ)−∇~ηE(~ξ) • (~η − ~ξ). (13.20)

63

13 The Bregman Iteration

Rather than solve (13.19), one may recursively solve

(uk+1, qk+1) = argmin
(u,q)

BE((u, q), (u
k , qk)) +

µ

2

∫

Ω

‖qk −∇u‖22d~x.(13.21)

Remark

The benefit in having (13.21) is a higher regularity compared to the original form
(13.13). The numerical advantages gained in this way are not obvious. However, one
can validate:

• The resulting Bregman iteration converges very quickly.

• The value µ can be chosen as a constant, e.g. it can be chosen to optimise the
convergence speed of the iterative algorithm.

• The Bregman iteration behaves very stable.

Special care need to be taken interpreting ∇~ηE(uk, qk) within BE((u, q), (u
k , qk)), as

E is in the considered case not differentiable. However, E is (due to the integral over
Ω) Lipschitz continuous which suffices to define subdifferentials.

The subdifferential is a generalisation of the gradient. For a function f : Rn → R, the
subdifferential at x̂ is given by

∂f(x̂) = {g ∈ R
n : f(x)− f(x̂) ≥ g • (x− x̂) ∀x ∈ R

n}. (13.22)

The elements g ∈ ∂f(x̂) are called subdifferentials.

Example

The subdifferential of the function f : R → R, f(x) = |x|, is given by

∂f(x̂) =







−1 , x̂ < 0,

[−1, 1] , x̂ = 0,

1 , x̂ > 0.

(13.23)

To conclude, ∇~ηE(uk, qk) is an element in ∂E(uk, qk).

Remarks

a) It can be proven rigorously that the described strategy works.

b) One can get an explicit formula for ∇~ηE, so that the construction of an iterative
scheme is simple.

64

13.2 Application to TV Denoising

Summary

The use of the Bregman distance offers possibilities to reformulate difficult optimisation
problems into simpler ones, also leading to efficient schemes.

65

14 Splitting Schemes

Motivation

Is it possible to simplify optimisation algorithms?

We begin by studying a prototype of variational problems:

u∗ = min
u∈H

IC (u) +
1

2
||f − u||2, (14.1)

where

• C is a convex set of sought functions,

• IC (·) is the indicator function:

IC : H → R ∪ {+∞}, IC (u) =

{

0, if u ∈ C

+∞, otherwise
(14.2)

• H is a real Hilbert space with an inner product 〈·, ·〉 and a norm ||.||, i.e. it is a
vector space of functions where one can measure angles and distances.

The task of (14.1) is to determine the projection of f onto C, i.e. to find in a predefined
set of functions C the closest one to f .

As in penalisation methods, we generalise now the function IC . It turns out to be
useful to consider the class of functions Γ0 (H).

Definition 14.1 An extended real-valued function E : H → R ∪ {+∞} belongs to
Γ0 (H) if E is

(i) convex,

(ii) not identically equal to +∞, and

(iii) lower semicontinuous (LSC).

Lower semicontinuity is a property of extended real-valued functions that is weaker
than continuity. It means that for every ‘point’ u0 ∈ H, E (u) is either close to or
larger than E (u0) if u is in the neighbourhood of u0.

67

14 Splitting Schemes

The variational problem obtained by replacing IC with an arbitrary function E ∈
Γ0 (H),

u∗ = min
u∈H

E (u) +
1

2
||u− f ||2, (14.3)

admits a unique solution u∗, and we set

proxE (f) := u∗. (14.4)

The operator proxE : H → H is called proximity operator because of the interpretation
of (14.3) as a ‘relaxed’ projection problem.

14.1 The Proximal Point Algorithm

We generalise (14.3) by the following generic formulation.

Problem 14.1 Let E1 and E2 be two functions in Γ0 (H) such that E2 has a
bounded subgradient. The objective is to minimise E = E1 + E2 over H.

One can prove

Theorem 14.1 Let u ∈ H and γ ∈]0,+∞[. Then u solves Problem 14.1 if and
only if

u = proxγE1
(u− γ∇E2 (u)) . (14.5)

The formula (14.5) inspires a convergent fixed point algorithm. Because of the use of
the proximity operator proxγE1

the resulting method is called proximal point algorithm.

Remark

Although the task is to minimise E1+E2, in (14.5) we effectively minimise only w.r.t.
E1, while a gradient descent scheme for minimising E2 is encoded in the argument in
(14.5).

Can we approach the problem in a more general way?

14.2 Monotone Operators

An operator T on a Hilbert space H is a ‘point-to-set’ mapping

T : H → 2H. (14.6)

Thereby, 2H denotes the power set of H, i.e. the set of all possible subsets of H.

We will make no distinction between T and its graph, i.e. the set {(x, y) : y ∈ T (x)}.
Thus, we may simply say that an operator is any subset T of H × H, and define
T (x) := Tx := {y : (x, y) ∈ T}.

68

14.2 Monotone Operators

Definition 14.2 Let (x, y) ∈ T .

a) The domain of T is its ‘projection’ onto the first coordinate: dom T = x.

b) The range (or image) of T is its ‘projection’ onto the second coordinate: im T =
y.

c) The inverse T−1 of T is in (y, x).

d) I denotes the identity operator (x, x).

Two basic constructions are as follows.

Definition 14.3 Let A,B be two operators, and c ∈ R. Then

cT := {(x, cy) : (x, y) ∈ T} (14.7)

A+B := {(x, y + z) : (x, y) ∈ A, (x, z) ∈ B}. (14.8)

An operator is monotone, if

〈x′ − x, y′ − y〉 ≥ 0 ∀ (x, y) ,
(
x′, y′

)
∈ T. (14.9)

A monotone operator is maximal if — considered as a graph — it is not strictly
contained in any other monotone operator on H.

One can show:

Theorem 14.2 If E is a proper convex and LSC function, then the subgradient ∂E
is a maximal monotone operator.

While Theorem 14.2 is useful for deriving a basic algorithm, the following assertion is
useful for constructing splittings.

Theorem 14.3 T is maximal monotone if and only if, for any x ∈ X and any scalar
λ > 0, there exists a unique z ∈ X such that x ∈ (I + λT) (z).

By Theorem 14.3, for any maximal monotone mapping T , the mapping

Jλ
T := (I + λT)−1 , (14.10)

called the resolvent of T , is a single-valued mapping defined everywhere on X.

A particular consequence of Theorem 14.3 is

0 ∈ T (x) ⇔ x = Jλ
T (x) . (14.11)

69

14 Splitting Schemes

14.3 Problem Structure Revisited

Let us write the considered optimisation task as

min
u∈H

F (u) (14.12)

for F proper convex and LSC. Then the first order optimality condition, in the described
context sometimes called Fermat’s rule, reads as

0 ∈ ∂F (u) , (14.13)

where we write “∈” as ∂F is set-valued by definition.

By Theorem 14.2, ∂F is a maximal monotone operator. Then the resolvent Jλ
∂F as

by (14.10) is defined.

The proximal point algorithm for solving the multi-valued equation (14.13) relies on

(14.11). It generates a sequence u(k) by the recurrence

u(k+1) = Jλ
∂F

(

u(k)
)

. (14.14)

This method is known to converge to the solution of (14.12) from an arbitrary u(0).

In some cases — e.g. in some (not all!) settings in which F is composed of a data
term and a smoothness term — F can be expressed as a sum of two proper convex
and LSC functions, F := R + S, in such a way that the resolvents Jλ

∂R and Jλ
∂S are

much easier to evaluate than Jλ
∂F .

Splitting algorithms are designed to solve

0 ∈ ∂F (u) = ∂R (u) + ∂S (U) , (14.15)

using Jλ
∂R and Jλ

∂S instead of Jλ
∂F .

The inclusion (14.15) can be rewritten as:

∂S (u) ∈ −∂R (u) ⇔ u+ η∂S (u) ∈ u− η∂R (u) , η > 0

⇔ (I + η∂S) (u) ∈ (I − η∂R) (u) , η > 0

⇔ u ∈ Jλ
∂S (I − η∂R) (u) , η > 0. (14.16)

The corresponding fixed point iteration

u(k+1) = J
η
∂S (I − η∂R)

(

u(k)
)

(14.17)

is called forward-backward-splitting.

70

14.3 Problem Structure Revisited

Remark

One may also rewrite (14.15) as ∂R (u) ∈ −∂S (u).

The Douglas-Rachford splitting algorithm appears to allow the most attractive math-
ematical convergence properties of splitting schemes. It reads as

u(k+1) =
[

Jλ
∂R

(

2Jλ
∂S − I

)

+
(

I − Jλ
∂S

)](

u(k)
)

. (14.18)

Summary

• Splitting algorithms rely on proper convex and LSC energy functionals.

• Splitting algorithms rely on an additive decomposition of a given energy func-
tional.

71

15 Fast Optimisation and

Rank-Deficient Problems

Let us consider the problem

min
~x∈Rn

‖F (~x)‖22, F : Rn → R
n (15.1)

Aiming for a fast solver, we substitute in a first step F with its Taylor linearisation:

min
~xk+1∈Rn

‖F (~xk) + F ′(~xk) · (~xk+1 − ~xk)‖22 (15.2)

where F ′ denotes the n × n Jacobi matrix and ~xk an iterate; the solution of (15.2)
gives the next iterate ~xk+1. Defining

A := F ′(~x), x := ~xk+1 − ~xk, b := −F (~xk) (15.3)

we notice that the problem is equivalent to minimising the residual

min
x∈Rn

‖Ax− b‖22 (15.4)

An efficient numerical treatment relies on the use of orthogonal matrices.

Def.: A matrix Q is orthogonal, if and only if

(i) its columns are pairwise orthogonal

(ii) ‖Qx‖2 = ‖x‖2.

One can show that it holds Q⊤ = Q−1, and of course Q⊤ is also orthogonal.

Introducing a clever choice of Q⊤ into (15.4), the idea is that we solve instead a
simpler problem

min
~x

‖Q⊤(Ax− b)‖22 (15.5)

The numerical approach relies on the QR-decomposition of A:

Theorem: There is an orthogonal matrix Q such that A = QR where R is upper
triangular with non-negative diagonal elements.

73

15 Fast Optimisation and Rank-Deficient Problems

The factorisation A = QR is the key to define in a general setting the obvious iteration

~xk+1 := ~xk − F ′(~xk)† · F (~xk) (15.6)

where F ′(~xk)† is a generalised (pseudo-) iverse:

(a) The setting can be extended to F : Rn → R
m for m ≥ n (related to least-

squares-approximation)

(b) F ′(~xk) can be rank-deficient

(c) One can couple (15.6) with a trust-region idea.

For (a) and/or (b) the method is called Gauß-Newton-scheme, adding the option (c)
yields a Levenberg-Marquardt-scheme.

15.1 Theory of QR-Decomposition

We now introduce the augmented system:

Theorem: Assume that A ∈ R
n×n has rank n. Then the symmetric linear system

(
I A

A⊤ 0

)

︸ ︷︷ ︸

∈R2n×2n

(
y

x

)

︸ ︷︷ ︸

∈R2n

=

(
y

x

)

︸ ︷︷ ︸

∈R2n

(15.7)

is nonsingular and solves minx ‖Ax − b‖22, where y takes the role of the residual
y = b−Ax.

We now show how to use the QR-decomposition to solve (15.7).

Theorem: Let rank(A) = n and A = QR. Then the solution of (15.7) can be
computed from

d := Q⊤b, x := R−1d (15.8)

Proof: The augmented system can be written as

y +Ax = b, A⊤y = 0. (15.9)

Using A = QR we obtain

y +QRx = b, R⊤Q⊤y = 0. (15.10)

Multiplying the first equation with Q⊤ and the second with (R⊤)−1 =: R−⊤, we get

Q⊤y +Rx = Q⊤b, Q⊤y = 0. (15.11)

Using the second equation to eliminate the first summand in the first equation, we can
solve for x via x = R−1Q⊤b = R−1d.

2.

74

15.2 Computing Q and R

We now show how to modify the QR-decomposition for the rank-deficient case.

Theorem: Let A ∈ R
n×n with rank(A) := r < n, then there is a permutation matrix

Π such that

AΠ = Q

(
R11 R12

0 0

)
} r
}n− r

(15.12)

where R11 ∈ R
r×r is upper triangular with positive diagonal elements.

The proof relies on sorting the columns of A such that AΠ = (A1, A2) where A1 ∈
R
n×r has r linearly independent columns. Remember in this case not to forget to sort

the unknowns in x plus the entries of b in accordance.

15.2 Computing Q and R

We consider here the method of Gram and Schmidt (GS). Its basic idea is to produce
the columns of Q successively by orthogonalising the columns of A.
Assume q1, . . . , qk have been determined, and the qi have been normalised. Then, we
can compute the projections

rik = qi · ak (15.13)

for i = 1, . . . , k− 1. This determines the amount of the column vector ak lying in the
space spanned by {q1, . . . , qk−1}. The remaining part of ak is

q̂ = ak −
k−1∑

i=1

rikqi (15.14)

which still needs to be normalised. Successive application leads to the GS algorithm,
where Q and R are generated columnwise.

A modified version (MGS) of this method is obtained by subtracting the projections
rikqi from ak as soon as these are computed, i.e.

a
(k+1)
j := a

(k)
j − rkjqk, rkj := qk · a

(k)
j , (15.15)

for j = k + 1, . . . , n. The MGS method is known to be more stable and accurate.

75

15 Fast Optimisation and Rank-Deficient Problems

76

	Variational Methods I: Introduction
	A model problem
	The Euler-Lagrange equation

	Variational Methods II: The Euler-Lagrange equation
	Justification of the Euler-Lagrange equation
	Multiple dimensions
	Other boundary conditions

	Variational Methods III: Complex Computations
	Systems of Euler-Lagrange equations
	Example from image segmentation

	Numerical Treatment of Variational Problems
	Discretisation of the Euler-Lagrange equation

	Numerical Treatment of Variational Problems II: Direct Optimisation Approach
	Integration of the Energy functional
	Building the Bridge between Euler-Lagrange and Direct Optimisation

	Descent Methods: An Introduction
	Generic Algorithm Formulation
	Basic Line Searching Strategies

	Basic Order Line Search
	Newton's method

	The Trust Region Method
	Convexity of Objective Functions
	First order convexity condition
	Second order convexity condition
	Consequences of Convexity Conditions

	Convex Functions and Convex Sets
	Condition number of sublevel sets
	Analysis of Gradient Descent

	Constrained Optimisation
	Penalisation and Barrier Methods
	Lagrange Multiplier
	Augmented Lagrangian algorithms

	Duality in Constrained Optimization
	Karush-Kuhn-Tucker (KKT) optimality conditions

	The Bregman Iteration
	Bregman Distance and Duality
	Application to TV Denoising

	Splitting Schemes
	The Proximal Point Algorithm
	Monotone Operators
	Problem Structure Revisited

	Fast Optimisation and Rank-Deficient Problems
	Theory of QR-Decomposition
	Computing Q and R

