
COHERENCE ENHANCING
SHOCK-FILTERING ON A MOBILE PHONE

Markus Mainberger

June 13, 2007

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 1

Overview

Motivation

The used Routine
Shock Filters
Structure Tensor
Coherence-Enhancing Shock Filters
Implementation

Realisation on a Mobile Phone
The Mobile Phone
Fixed-point Arithmetic
Avoiding Divisions
Using Vector Matrices
Other Optimisations

Summary

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 2

Motivation

Really? One can even phone with this thing?

I The additional functions of a mobile phone have increased a lot,
e.g. taking pictures.

I Obviously also the computational power has increased.
But: Abilities of the used processors are still limited

Question:
Is it possible to apply highly demanding image processing routines on a
modern mobile phone?

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 3

The used Routine

Coherence-Enhancing Shock Filters

Figure: Example images of size 256× 256 for almost artistic results of
coherence-enhancing shock filtering. (Parameters: line width = 3, number of
iterations = 20)

Figure: Finger print image, 256× 256. From left to right: original image,
conventional shock filtered image, coherence-enhancing diffusion filtered
image, coherence-enhancing shock filtered image

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 4

Shock Filters

I Shock filters belong to the class of morphological image
enhancement methods.

I PDE based formulation:

ut = −sign(∆u)|∇u|

with original image f as initial condition.

I Evolution under this PDE:
Produces at time t a dilation (∆u < 0)/erosion (∆u >= 0) process
(disc shaped structuring element of radius t).

I Improvements lead to

ut = −sign(vηη)|∇u|

where η‖∇v and v := Kσ ∗ u .

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 5

Structure Tensor

I Shock filter performance depends strongly on direction
η‖∇(Kσ ∗ u).

I Adjacent gradients ∇(Kσ ∗ u) with same direction but opposite
orientation cancel.

⇒ Use a more reliable descriptor of local structure: the structure
tensor

consider J0(∇u) = ∇u∇u> instead of ∇u.

Average orientations:

Jρ(∇u) = Kρ ∗ (∇u∇u>)

Properties:
I 2× 2 matrix, symmetric, positive semidefinite.
I Eigenvectors describe the direction where local contrast is

maximal/minimal.
I Contrast measured by eigenvalues.

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 6

Coherence-Enhancing Shock Filters

Let ω be the normalised eigenvector, corresponding to the largest
eigenvalue of the structure tensor Jρ

Reformulate the shock filter as:

ut = −sign(vωω)|∇u|

I Due to ω: shocks orthogonal to flow direction.

I Steady state after finite time.

I Structure scale σ: size of the flow like patterns
(line thickness of 2σ – 3σ).

I Integration scale ρ: averages orientation information
(ρ should be larger than σ).

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 7

Implementation

The original implementation follows roughly these steps:

Input: Original image f = u0, line width σ >= 3, number of iterations n.

Output: Filtered image un.

1. Apply a convolution using a discretised Gaussian (vk := Kσ ∗ uk).

2. Compute structure tensor Kρ ∗ (∇uk∇uk>) with ρ = 3 · σ
(derivatives are approximated by Sobel masks).

3. Look for the direction with largest contrast
(corresponds to the eigenvector ω).

4. Compute second directional derivative of vk i.e vk
ωω in this direction

using standard finite difference masks.

5. Compute the dilation/erosion of uk for each pixel using a square of
size σ/3 as structuring element.

6. For all pixels: If vk
ωω < 0 return result from dilation for uk+1 else

return result from erosion for uk+1.

7. Repeat step 1. - 6. until number of iterations n is reached.

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 8

Implementation

The original implementation follows roughly these steps:

Input: Original image f = u0, line width σ >= 3, number of iterations n.

Output: Filtered image un.

1. Apply a convolution using a discretised Gaussian (vk := Kσ ∗ uk).

2. Compute structure tensor Kρ ∗ (∇uk∇uk>) with ρ = 3 · σ
(derivatives are approximated by Sobel masks).

3. Look for the direction with largest contrast
(corresponds to the eigenvector ω).

4. Compute second directional derivative of vk i.e vk
ωω in this direction

using standard finite difference masks.

5. Compute the dilation/erosion of uk for each pixel using a square of
size σ/3 as structuring element.

6. For all pixels: If vk
ωω < 0 return result from dilation for uk+1 else

return result from erosion for uk+1.

7. Repeat step 1. - 6. until number of iterations n is reached.

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 8

Implementation

The original implementation follows roughly these steps:

Input: Original image f = u0, line width σ >= 3, number of iterations n.

Output: Filtered image un.

1. Apply a convolution using a discretised Gaussian (vk := Kσ ∗ uk).

2. Compute structure tensor Kρ ∗ (∇uk∇uk>) with ρ = 3 · σ
(derivatives are approximated by Sobel masks).

3. Look for the direction with largest contrast
(corresponds to the eigenvector ω).

4. Compute second directional derivative of vk i.e vk
ωω in this direction

using standard finite difference masks.

5. Compute the dilation/erosion of uk for each pixel using a square of
size σ/3 as structuring element.

6. For all pixels: If vk
ωω < 0 return result from dilation for uk+1 else

return result from erosion for uk+1.

7. Repeat step 1. - 6. until number of iterations n is reached.

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 8

Implementation

The original implementation follows roughly these steps:

Input: Original image f = u0, line width σ >= 3, number of iterations n.

Output: Filtered image un.

1. Apply a convolution using a discretised Gaussian (vk := Kσ ∗ uk).

2. Compute structure tensor Kρ ∗ (∇uk∇uk>) with ρ = 3 · σ
(derivatives are approximated by Sobel masks).

3. Look for the direction with largest contrast
(corresponds to the eigenvector ω).

4. Compute second directional derivative of vk i.e vk
ωω in this direction

using standard finite difference masks.

5. Compute the dilation/erosion of uk for each pixel using a square of
size σ/3 as structuring element.

6. For all pixels: If vk
ωω < 0 return result from dilation for uk+1 else

return result from erosion for uk+1.

7. Repeat step 1. - 6. until number of iterations n is reached.

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 8

Implementation

The original implementation follows roughly these steps:

Input: Original image f = u0, line width σ >= 3, number of iterations n.

Output: Filtered image un.

1. Apply a convolution using a discretised Gaussian (vk := Kσ ∗ uk).

2. Compute structure tensor Kρ ∗ (∇uk∇uk>) with ρ = 3 · σ
(derivatives are approximated by Sobel masks).

3. Look for the direction with largest contrast
(corresponds to the eigenvector ω).

4. Compute second directional derivative of vk i.e vk
ωω in this direction

using standard finite difference masks.

5. Compute the dilation/erosion of uk for each pixel using a square of
size σ/3 as structuring element.

6. For all pixels: If vk
ωω < 0 return result from dilation for uk+1 else

return result from erosion for uk+1.

7. Repeat step 1. - 6. until number of iterations n is reached.

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 8

Implementation

The original implementation follows roughly these steps:

Input: Original image f = u0, line width σ >= 3, number of iterations n.

Output: Filtered image un.

1. Apply a convolution using a discretised Gaussian (vk := Kσ ∗ uk).

2. Compute structure tensor Kρ ∗ (∇uk∇uk>) with ρ = 3 · σ
(derivatives are approximated by Sobel masks).

3. Look for the direction with largest contrast
(corresponds to the eigenvector ω).

4. Compute second directional derivative of vk i.e vk
ωω in this direction

using standard finite difference masks.

5. Compute the dilation/erosion of uk for each pixel using a square of
size σ/3 as structuring element.

6. For all pixels: If vk
ωω < 0 return result from dilation for uk+1 else

return result from erosion for uk+1.

7. Repeat step 1. - 6. until number of iterations n is reached.

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 8

Implementation

The original implementation follows roughly these steps:

Input: Original image f = u0, line width σ >= 3, number of iterations n.

Output: Filtered image un.

1. Apply a convolution using a discretised Gaussian (vk := Kσ ∗ uk).

2. Compute structure tensor Kρ ∗ (∇uk∇uk>) with ρ = 3 · σ
(derivatives are approximated by Sobel masks).

3. Look for the direction with largest contrast
(corresponds to the eigenvector ω).

4. Compute second directional derivative of vk i.e vk
ωω in this direction

using standard finite difference masks.

5. Compute the dilation/erosion of uk for each pixel using a square of
size σ/3 as structuring element.

6. For all pixels: If vk
ωω < 0 return result from dilation for uk+1 else

return result from erosion for uk+1.

7. Repeat step 1. - 6. until number of iterations n is reached.

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 8

Implementation

The original implementation follows roughly these steps:

Input: Original image f = u0, line width σ >= 3, number of iterations n.

Output: Filtered image un.

1. Apply a convolution using a discretised Gaussian (vk := Kσ ∗ uk).

2. Compute structure tensor Kρ ∗ (∇uk∇uk>) with ρ = 3 · σ
(derivatives are approximated by Sobel masks).

3. Look for the direction with largest contrast
(corresponds to the eigenvector ω).

4. Compute second directional derivative of vk i.e vk
ωω in this direction

using standard finite difference masks.

5. Compute the dilation/erosion of uk for each pixel using a square of
size σ/3 as structuring element.

6. For all pixels: If vk
ωω < 0 return result from dilation for uk+1 else

return result from erosion for uk+1.

7. Repeat step 1. - 6. until number of iterations n is reached.

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 8

Implementation

The original implementation follows roughly these steps:

Input: Original image f = u0, line width σ >= 3, number of iterations n.

Output: Filtered image un.

1. Apply a convolution using a discretised Gaussian (vk := Kσ ∗ uk).

2. Compute structure tensor Kρ ∗ (∇uk∇uk>) with ρ = 3 · σ
(derivatives are approximated by Sobel masks).

3. Look for the direction with largest contrast
(corresponds to the eigenvector ω).

4. Compute second directional derivative of vk i.e vk
ωω in this direction

using standard finite difference masks.

5. Compute the dilation/erosion of uk for each pixel using a square of
size σ/3 as structuring element.

6. For all pixels: If vk
ωω < 0 return result from dilation for uk+1 else

return result from erosion for uk+1.

7. Repeat step 1. - 6. until number of iterations n is reached.

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 8

The Mobile Phone

I T. Krattinger used a Nokia N80 with 206 MHz ARM926EJ-S
Processor and 19MB Ram.

I Operating system Symbian supports C++ applications.
I For an image of size 410× 410 the original implemantation needs

roughly 8 minutes.
⇒ This is not reasonable for mobile applications.

The goal of Krattinger’s diploma thesis was to improve the running time
by code optimisation to make the routine appliable on the mobile phone.

Figure: Left: Runtime diagram. Right: The Nokia N80 mobile phone

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 9

Fixed-point Arithmetic

I The AFM926EJ-S does not support floating point numbers.
Instead they are simulated by a sequence of integer operations.

⇒ Use so called fixed-point numbers
I less precise, but much faster
I integer computations with some additional shifts for

multiplication/division
I Largest/smallest number in our routine is ±1, 000, 000.

Thus we can use 21 bit places before the decimal point and 11 bit
decimal places.

gain in time: 50%

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 10

Avoiding Divisions

I Additions/subtractions need 1 cycle
Multiplications need 2 cycles
Divisions need 21 cycles

⇒ avoid divisions by

I merging fractions:
1

a
+

1

b
=

b + a

a · b
I resolve double fractions:

a/b

c/d
=

a · d
b · c

I precomputing fractions: c :=
1

a
(dividing by a means multiplying by c)

I Compute the divisor and use branches if divisor equals to a certain
constant
⇒ compiler can optimise computations

gain in time: 42%

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 11

Using Vector Matrices

Figure: Left 2× 4 Matrix in memory as 2D array. Right 2× 4 Matrix in
memory as 1D array.

I The rows of 2D arrays are scattered allover the memory.
Prevents efficient cashing.

⇒ Use 1D arrays and manage the indices in an proper way.

f o r (i =0; i<nx ; i++)
f o r (j =0; j<ny ; j++)

reg = mtx [i] [j] ;

max = nx∗ny ;
f o r (i =0; i<max ; i+=ny)

f o r (j=i ; j < i+ny ; j++)
reg = v [j] ;

gain in time: 22%

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 12

−→

Other Optimisations (1)

I Loops are time consuming due to branches

⇒ Resolving loops to a certain extend:

f o r (i =0; i<n ; i++)
loopbody

f o r (i =0; i<n ; i +=2){
l oopbody
loopbody

}

gain in time 12%

I Erosion and dilation are applied using seperate procedures

⇒ Apply erosion and dilation parallel

1. Store maxima and minima from dilation/erosion process w.r.t. the
columns next to each other → optimal caching

2. Use maxima/minima for determing dilation/erosion w.r.t. rows and
save only the required value of these two.

gain in time 7%

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 13

−→

Other Optimisations (2)

I Function calls are associated with branch, load and store
instructions and therefore time consuming.

⇒ Use inlining
I pays off for the routine, which determines the edge direction

(see slide 8 step 3)
I not always reasonable: long code files mean more memory load

gain in time 3.5%

I Many memory movements due to required image copies

⇒ Use special instructions that copy complete memory blocks
(caution: unsafe)

gain in time 2%

I Routine uses reflected boundaries, which has to be considered in
each loop.

⇒ Resetting zero point,
i.e. move array pointer after memory allocation.

gain in time 1%

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 14

Result

Overall gain in time: about 83%

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 15

Figure: Visualisation of the gain in time through the applied
optimisations (underlying imgage size: 410× 410 pixels)

Summary

I It is possible to apply highly demanding image processing routines
on a modern mobile phone!

I Original implementation needed roughly 8 minutes for an image of
size 410× 410 pixels
Now: An image of this size is processed in 85 seconds

I Given highly demanding image processing routines, one can increase
the running time and make them useful for many of today’s devices
by simple and basic code optimisations.

Yes, it is even possible to phone with this thing! But why phone?
I’ve got a Coherence-Enhancing Shock Filter!

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 16

Thank you!
Feel free to ask questions!

References:
Tobias Krattinger.

Hochleistungsarithmetik auf einem Mobiltelephon.

Diploma thesis, NTB Interstaatliche Hochschule für Technik Buchs,
November 2006.

Joachim Weickert.

Coherence-Enhancing Shock Filters.

In G. Krell B. Michaelis, editor, Pattern Recognition. Lecture Notes in
Computer Science, volume 2781, pages 1–8. Springer, Berlin, 2003.

June 13, 2007 COHERENCE ENHANCING SHOCK-FILTERING ON A MOBILE PHONE Slide 17

	Motivation
	The used Routine
	Shock Filters
	Structure Tensor
	Coherence-Enhancing Shock Filters
	Implementation

	Realisation on a Mobile Phone
	The Mobile Phone
	Fixed-point Arithmetic
	Avoiding Divisions
	Using Vector Matrices
	Other Optimisations

	Summary
	

