Nonlinear Diffusion in Graphics Hardware

Based on the homonymous paper by Martin Rumpf and Robert Strzodka

Pascal Gwosdek

13.06.07

▶ ∢ ⊒

-

Diffusion

Figure: Linear (top) and nonlinear (bottom) diffusion. Authors: M. Rumpf and R. Strzodka.

Overview and Introduction OpenGL Rendering pipeline Operations

Graphics Hardware

- Today: GPUs superior to CPUs in computing power
- But: GPUs specialized
 - Restricted range of values
 - Less accuracy
 - Restricted set of instructions
 - Parallelism dominates sequential execution by design

Figure: Performance of ATI/AMD GPUs and CPUs. Authors: wired.com, Pascal Gwosdek

() <) <)
 () <)
 () <)
</p>

3

= 200

Overview and Introduction OpenGL Rendering pipeline Operations

OpenGL Rendering pipeline

Figure: The OpenGL rendering pipeline. Authors: OpenGL Architecture Review Board, Pascal Gwosdek

4

Pascal Gwosdek

OpenGL Rendering pipeline

OpenGL Rendering pipeline (simplified)

Figure: The OpenGL rendering pipeline. Authors: OpenGL Architecture Review Board, Pascal Gwosdek

Overview and Introduction OpenGL Rendering pipeline Operations

Operations

Figure: Linear combination. Authors: MIA Group, Informationsdienst Wissenschaft e.V., Pascal Gwosdek Linear combination by glBlendFunc:

 $\mathsf{result} = 0.3 {\cdot} \mathsf{Weickert} {+} 0.7 {\cdot} \mathsf{Bruhn}$

Overview and Introduction OpenGL Rendering pipeline Operations

Operations

Figure: Multiplication. Authors: MIA Group, Informationsdienst Wissenschaft e.V., Pascal Gwosdek Componentwise multiplication by glBlendFunc:

 $\mathsf{result}_{ij} = \mathsf{Weickert}_{ij} \bullet \mathsf{Bruhn}_{ij}$

★ ∃ ► ★ ∃ ► _ ∃

= 200

Overview and Introduction OpenGL Rendering pipeline Operations

Operations

Figure: Function application. Authors: MIA Group, Pascal Gwosdek

Function application by glPixelMap:

$$result_{ij} = F(Wei\vec{c}kert_{ij})$$
$$result = F \circ Wei\vec{c}kert$$

8

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回< のへの

Overview and Introduction OpenGL Rendering pipeline Operations

Operations

Figure: Index shift. Authors: MIA Group, Pascal Gwosdek

Index shift by change of drawing positions:

result =
$$T_{\gamma} \circ \text{Weickert}$$

9

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回< のへの

Overview and Introduction OpenGL Rendering pipeline Operations

Operations

Figure: Histogram for vector norm. Authors: MIA Group, Pascal Gwosdek

With histograms provided by glGetHistogram, vector norms are easier to compute:

$$||Weickert||_k = \left(\sum_{x=0}^n x^k \cdot H(x)\right)^{\frac{1}{k}}$$

A = A = A = A = A = A = A

Overview and Introduction OpenGL Rendering pipeline Operations

Operations

Inner products can be written as norm of componentwise vector products:

$$\langle \vec{X}, \vec{Y}
angle = || \vec{X} \bullet \vec{Y} ||_1$$

Operations

Vector matrix products can be computed by

$$A\vec{X} = \sum_{\gamma=0}^{n-1} T_{\gamma} \circ (\vec{A^{\gamma}} \bullet \vec{X}).$$

with $\vec{A^{\gamma}}$ as the composed diagonal vector of $A = (a_{ij})_{ij} \in \mathbb{R}^n \times \mathbb{R}^n$ s.t. $\gamma = j - i \mod n$.

<ロ> (日) (日) (日) (日) (日) (日) (0) (0)

Overview and Introduction OpenGL Rendering pipeline Operations

Operations

Example: Vector matrix product

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3 \\ 4 \cdot 1 + 5 \cdot 2 + 6 \cdot 3 \\ 7 \cdot 1 + 8 \cdot 2 + 9 \cdot 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3 \\ 5 \cdot 2 + 6 \cdot 3 + 4 \cdot 1 \\ 9 \cdot 3 + 7 \cdot 1 + 8 \cdot 2 \end{pmatrix}$$

$$= T_0 \circ \begin{pmatrix} 1 \cdot 1 \\ 5 \cdot 2 \\ 9 \cdot 3 \end{pmatrix} + T_1 \circ \begin{pmatrix} 7 \cdot 1 \\ 2 \cdot 2 \\ 6 \cdot 3 \end{pmatrix} + T_2 \circ \begin{pmatrix} 4 \cdot 1 \\ 8 \cdot 2 \\ 3 \cdot 3 \end{pmatrix}$$

 Graphics Hardware Nonlinear Diffusion
 Overview and Introduction OpenGL Rendering pipeline

 Results and Conclusion
 Operations

Numbers

Graphics hardware is restricted to a fixed point number range from 0 to 1. This turns out to be a technical issue only.

 \rightarrow perform linear scaling

Perona-Malik Solving the equation system Algorithm

Perona-Malik

The authors use the modification of the Perona-Malik model proposed by Catté, Lions, Morel, and Coll:

$$\begin{array}{ll} \partial_t u - \operatorname{div}\left(g\left(\nabla u_{\varepsilon}\right)\nabla u\right) = 0, & \text{ in } \mathbb{R}^+ \times \Omega, \\ u\left(0, \cdot\right) = u_0, & \text{ on } \Omega, \\ \frac{\partial}{\partial \nu} u = 0, & \text{ on } \mathbb{R}^+ \times \partial \Omega. \end{array}$$

Discretization

The model is discretized in a semi-implicit manner using forward difference and applying the finite element method, which finally yields

$$\left(I + \frac{\tau}{h^2} \left(\left\langle g\left(\nabla \overrightarrow{U_{\varepsilon}^k}\right) \nabla \widehat{\Phi_{\alpha}}, \nabla \widehat{\Phi_{\beta}}\right\rangle \right)_{\alpha\beta}\right) \overrightarrow{U^{k+1}} = \overrightarrow{U^k},$$

This formula constitutes a linear system of equations of the form

$$A^k\left(\vec{U^k}\right)U^{\vec{k}+1}=\vec{R}\left(\vec{U^k}\right).$$

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q Q

Perona-Malik Solving the equation system Algorithm

Solving the equation system

Two iterative solvers for the linear equation system are compared:

• The Jacobi Iteration

$$F\left(\vec{X^{i}}\right) = D^{-1}\left(\vec{R} - (A - D)\vec{X^{i}}\right),$$

with D as the diagonal of A and

• the **Conjugate Gradient (CG)** method, which is based on a minimization problem for

$$\Phi(\vec{X}) = \frac{1}{2}\vec{X}^{T}A\vec{X} - \vec{X}^{T}R.$$

Graphics Hardware Perona-Malik Nonlinear Diffusion Solving the equation system Results and Conclusion Algorithm

Algorithm

ł

nonlinear diffusion

```
load
          image, parameters
init
          hardware
encode image \vec{U^0}
forall (timesteps k)
      store \vec{R^k} \leftarrow \vec{U^k}
      calc diffusivity \rightsquigarrow A
      init solver \vec{X^0} \leftarrow \vec{U^k}
      forall (iterations I)
            calc X^{\vec{l}+1} \leftarrow F(\vec{X^{l}})
      store U^{\vec{k}+1} \leftarrow X^{\vec{l}+1}
      decode U^{\vec{k}+1} and display
```

伺 ト イヨト イヨト ヨヨ つくべ

Results Discussion Summary

Results

Figure: Comparison of different solvers. Top: Adaptive software preconditioned CG [sic!]. Middle: Jacobi solver on graphics hardware. Bottom: CG solver on graphics hardware. Authors: M. Rumpf and R. Strzodka.

Results Discussion Summary

Results

Figure: Comparison of different solvers (Zoom). Left: Adaptive software preconditioned CG [sic!]. Middle: Jacobi solver on graphics hardware. Right: CG solver on graphics hardware. Authors: M. Rumpf and R. Strzodka.

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回</p>

Nonlinear Diffusion Results and Conclusion Results

Results

Method		t/100 iterations
CG solver	in software	"fast"
Jacobi solver	on NVidia GeForce2 Ultra	pprox 1.7 sec
Jacobi solver	on SGI Onyx2	17 sec
CG solver	on SGI Onyx2	42 sec

Table: Comparison of different solvers, for 256×256 px images. Note: The authors do not mention the time of the reference implementation, but speak of "surprisingly weak performance" of the "slower" hardware implementations on the SGI Onyx. Authors: M. Rumpf and R. Strzodka.

(ロ) (同) (E) (E) (E) (C)

 Graphics Hardware
 Results

 Nonlinear Diffusion
 Discussion

 Results and Conclusion
 Summary

Discussion

Possible reasons for the weak performance:

- read back of framebuffer about 60 times slower than writing
- glGetHistogram slow

Figure: Excerpt of the OpenGL rendering pipeline. Authors: OpenGL Architecture Review Board, Pascal Gwosdek

(ロ) (同) (目) (日) (日) (0)

Graphics Hardware	Results
Nonlinear Diffusion	Discussion
Results and Conclusion	Summary

Summary

- Linear algebra in graphics hardware
- Nonlinear diffusion
 - Overview
 - Implementation
- Results
- Problems

Results Discussion Summary

References

 OpenGL Architecture Review Board, Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis.
 OpenGL Programming Guide. http://www.opengl.org/documentation/red_book/.

E. Bruce Pitman.

Conjugate Gradient Method.

http://www.ccr.buffalo.edu/class-notes/hpc2-00/
odes/node4.html, 2000.

Martin Rumpf and Robert Strzodka.

Nonlinear Diffusion in Graphics Hardware.

In Proceedings of EG/IEEE TCVG Symposium on Visualization VisSym '01, pages 75–84. Universität Bonn, Springer, 2001.

Robert Strzodka.

Hardware Efficient PDE Solvers in Quantized Image Processing.

PhD thesis, Fachbereich Mathematik der Universität Duisburg-Essen, 2004.

Wikipedia.

Finite Element Method.

Graphics Hardware	Results
Nonlinear Diffusion	Discussion
Results and Conclusion	Summary

Discussion

Thank you!

Please feel free to ask questions.

Solving the equation system - The CG method

The CG solver is given by

$$F\left(\vec{X^{i}}\right) = \vec{X^{i}} + \frac{\left\langle \vec{r^{i}}, \vec{r^{i}} \right\rangle}{\left\langle A\vec{p^{i}}, \vec{p^{i}} \right\rangle} \cdot \vec{p^{i}},$$

with the search directions

$$\vec{p^{i}} = \vec{r^{i}} + \frac{\left\langle \vec{r^{i}}, \vec{r^{i}} \right\rangle}{\left\langle \vec{r^{i-1}}, \vec{r^{i-1}} \right\rangle} \cdot \vec{p^{i-1}}$$

and the residuals

$$\vec{r^i} = \vec{R} - A\vec{X^i}.$$