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Application in Morphology

The Slope Transform

S(m) = statx(f (x)−mx)

The Slope Transform is in fact only a generalization of the
Legendre Transform

I The Fourier Transform maps Convolution to
Multiplication

I It has been shown that the Slope Transform is the
morphological equivalent of the Fourier Transform

I It maps Dilation to Addition

The Legendre Transform can be used to speed up
morphological operations like dilation.
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Definition

The Legendre Transform ist defined by

f ∗(m) = maxx(mx − f (x))

I f ∗(m) denotes the Legendre transform of m

I maxx(...) maximizes the expression w.r.t. x

I m denotes the slope f ′(x0) at some x0

I f (x) denotes a known (convex) function
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Definition (2)

Reminder
A line t with slope m and y -interception n is given by the
formula

t(x) = mx + n

Observation
The Legendre Transform measures the distances between the
line t(x) = mx and f (x) and finally outputs the maximal
distance.
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Definition (3)

Is there a relation between m and the position x0 where the
maximum is obtained?

Computing
∂

∂x0
(mx0 − f (x0)) = 0

yields
m = f ′(x0)

This enables us to state another version of the Legendre
transform:

f ∗(m) = mf ′−1(m)− f (f ′−1(m))
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Interpretation of the Legendre Transform

Idea
Consider:

f(x)
mx
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Interpretation of the Legendre Transform (2)

Idea
Construct the line mx − f ∗(m):

f(x)
mx - f ∗(m)
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Interpretation of the Legendre Transform (3)

Observation:
f ∗(m) computes the negative y -interception of the tangent
of f with the slope m.

Proof:
A tangent at position x0 has to fulfill the following
constraint:

f (x0) = f ′(x0)x0 + n

This leads to
n = −f ∗(f ′(x0))

By using the Legendre Transform we can parameterize the
family of tangents of a graph:

F (x , y ,m) = mx − y − f ∗(m) = 0
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Backtransformation

Given a family of tangents F (x , y ,m) = 0 we want to find a
function f which touches each member of this family. This
function is also called the Envelope of F .
Example of a family of tangents:
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Backtransformation (2)

Property of the envelope:

I Points on the envelope are points where infinitesimally
adjacent members of F intersect

I This means x and y in F (x , y ,m) have to be constant
in m at these points

This leads to the following 2 constraints:

F (x , y ,m) = 0

∂

∂m
F (x , y ,m) = 0

Eliminating m from these 2 equations yields that the
Legendre Transform is its own inverse:

f (x) = f ∗∗(x)
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Some concepts from convex analysis

Convex Set
A set of points is called convex if all points inside the set can
be linked by a line without leaving the set.

Convex Hull
The set of points envelopping a convex set is called the
convex hull.

The Epigraph of a function

The set of points lying on the graph and above it is called
Epigraph.

Convex function
A function is convex if its Epigraph is a convex set.
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Some observations

I It is only necessary to find x0 where the maximum
occurs

I A convex function has the property f ′′(x) ≥ 0, i.e. its
slope is only increasing

I A non-convex function can be made convex by applying
a convex hull algorithm

So the Legendre Transform can be computed by solving the
following problem:

H(m) = arg maxx(mx − f (x))

This function outputs the value x0 where the expression is
maximized.
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Some observations (2)

Given n points (x1, f (x1)), . . . , (xn, f (xn)) we can compute
the local slopes ci by using the following formula:

f (xi+1)− f (xi )

xi+1 − xi

Since f ′′(x) ≥ 0 the sequence ci is only increasing.

Given m, computing H(m) is now rather straightforward:

I If ci−1 < m < ci then H(m) = {xi}
I If ci = m then H(m) = {xi , xi+1}
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The Algorithm

Now we are ready to state the algorithm:

1. Input data: Choose x1, . . . .xn, f (x1), . . . , f (xn) and
m1, . . . ,mm

2. Convex step: Compute the convex hull of (xi , f (xi )) and
rename the resulting sequence so that P1, . . . ,Ph are
the vertices of the convex hull.

3. Merge Step: Compute ci for i = 1, . . . , h. Next, for
each mj , find the index i for which ci < mj < ci+1

Complexity

This algorithm has a linear-time complexity.
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Remarks

I One can prove that computing the dicrete Legendre
Transform of a function converges towards the
continuous one

I Note: n = m is required to obtain good numerical
accuracy

I The convex step of the algrithm is only necessary if the
signal is non-convex

I Applying the algorithm twice to a non-convex signal
yields the convex hull of the signal
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Summary

I The Legendre Transform maps a function to its family
of tangents

I It is its own inverse (only for convex functions)

I The presented algorithm transforms even non-convex
signals

I The Legendre Transform can be used to speed up
morphological operations like dilation
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