The Fast Legendre Transform

Alexander Hewer

Mathematical Image Analysis Group Saarland University Seminar: Numerical Algorithms for Image Analysis Supervisor: Prof. Dr. Joachim Weickert

The Fast Legendre Transform

Alexander Hewer

Outlin

Motivatior

The Legendre Transform Definition Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm Observations

The Algorithr Remarks

Summary

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Outline

Outline

Motivation

The Legendre Transform Definition Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

References

The Fast Legendre Transform

Alexander Hewer

Outline

Motivatior

The Legendre Transform Definition Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm Observations

The Algorithn Remarks

Summary

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Application in Morphology

The Slope Transform

$$S(m) = stat_x(f(x) - mx)$$

The Slope Transform is in fact only a generalization of the Legendre Transform

- The Fourier Transform maps Convolution to Multiplication
- It has been shown that the Slope Transform is the morphological equivalent of the Fourier Transform
- It maps Dilation to Addition

The Legendre Transform can be used to speed up morphological operations like dilation.

The Fast Legendre Transform

Alexander Hewer

Outline

Motivation

The Legendre Transform Definition Interpretation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

Definition

The Legendre Transform ist defined by

$$f^*(m) = max_x(mx - f(x))$$

- ▶ f*(m) denotes the Legendre transform of m
- max_x(...) maximizes the expression w.r.t. x
- ▶ *m* denotes the slope f'(x₀) at some x₀
- ► *f*(*x*) denotes a known (convex) function

The Fast Legendre Transform

Alexander Hewer

Outlin

Motivatio

The Legendre Transform

Definition Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Definition (2)

Reminder

A line t with slope m and y-interception n is given by the formula

$$t(x) = mx + n$$

Observation

The Legendre Transform measures the distances between the line t(x) = mx and f(x) and finally outputs the maximal distance.

The Fast Legendre Transform

Alexander Hewer

Outlin

Motivatio

The Legendre Transform

Definition Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

Definition (3)

Is there a relation between m and the position x_0 where the maximum is obtained?

Computing

$$\frac{\partial}{\partial x_0}(mx_0-f(x_0))=0$$

 \sim

yields

$$m = f'(x_0)$$

This enables us to state another version of the Legendre transform:

$$f^*(m) = mf'^{-1}(m) - f(f'^{-1}(m))$$

The Fast Legendre Transform

Alexander Hewer

Outlin

Motivatio

The Legendre Transform

Definition Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Interpretation of the Legendre Transform

Idea Consider:

The Fast Legendre Transform

Alexander Hewer

Outlin

Motivation

The Legendre Transform

Definition

Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

References

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Interpretation of the Legendre Transform (2)

Idea

Construct the line $mx - f^*(m)$:

The Fast Legendre Transform

Alexander Hewer

Outline

Motivatior

The Legendre Transform

Definition

Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

References

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Interpretation of the Legendre Transform (3)

Observation:

 $f^*(m)$ computes the negative *y*-interception of the tangent of *f* with the slope *m*.

Proof:

A tangent at position x_0 has to fulfill the following constraint:

$$f(x_0) = f'(x_0)x_0 + n$$

This leads to

$$n=-f^*(f'(x_0))$$

By using the Legendre Transform we can parameterize the family of tangents of a graph:

$$F(x, y, m) = mx - y - f^*(m) = 0$$

The Fast Legendre Transform

Alexander Hewer

Outline

Motivatior

The Legendre Transform

Definition

Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

Backtransformation

Given a family of tangents F(x, y, m) = 0 we want to find a function f which touches each member of this family. This function is also called the Envelope of F. Example of a family of tangents:

The Fast Legendre Transform

Alexander Hewer

Outline

Motivatior

The Legendre Transform Definition Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Backtransformation (2)

Property of the envelope:

- Points on the envelope are points where infinitesimally adjacent members of F intersect
- This means x and y in F(x, y, m) have to be constant in m at these points

This leads to the following 2 constraints:

$$F(x,y,m)=0$$

$$\frac{\partial}{\partial m}F(x,y,m)=0$$

Eliminating m from these 2 equations yields that the Legendre Transform is its own inverse:

$$f(x) = f^{**}(x)$$

The Fast Legendre Transform

Alexander Hewer

Outlin

Motivatior

The Legendre Transform Definition Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

Some concepts from convex analysis

Convex Set

A set of points is called convex if all points inside the set can be linked by a line without leaving the set.

Convex Hull

The set of points envelopping a convex set is called the convex hull.

The Epigraph of a function

The set of points lying on the graph and above it is called Epigraph.

Convex function

A function is convex if its Epigraph is a convex set.

The Fast Legendre Transform

Alexander Hewer

Outlin

Motivatio

The Legendre Transform Definition Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

Some observations

- It is only necessary to find x₀ where the maximum occurs
- A convex function has the property f"(x) ≥ 0, i.e. its slope is only increasing
- A non-convex function can be made convex by applying a convex hull algorithm

So the Legendre Transform can be computed by solving the following problem:

$$H(m) = arg max_x(mx - f(x))$$

This function outputs the value x_0 where the expression is maximized.

The Fast Legendre Transform

Alexander Hewer

Outline

Motivatior

The Legendre Transform Definition

Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

Some observations (2)

Given *n* points $(x_1, f(x_1)), \ldots, (x_n, f(x_n))$ we can compute the local slopes c_i by using the following formula:

$$\frac{f(x_{i+1})-f(x_i)}{x_{i+1}-x_i}$$

Since $f''(x) \ge 0$ the sequence c_i is only increasing.

Given m, computing H(m) is now rather straightforward:

• If
$$c_{i-1} < m < c_i$$
 then $H(m) = \{x_i\}$

• If
$$c_i = m$$
 then $H(m) = \{x_i, x_{i+1}\}$

The Fast Legendre Transform

Alexander Hewer

Outlin

Motivatior

The Legendre Transform Definition

Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

The Algorithm

Now we are ready to state the algorithm:

- 1. Input data: Choose $x_1, \ldots, x_n, f(x_1), \ldots, f(x_n)$ and m_1, \ldots, m_m
- 2. Convex step: Compute the convex hull of $(x_i, f(x_i))$ and rename the resulting sequence so that P_1, \ldots, P_h are the vertices of the convex hull.
- 3. Merge Step: Compute c_i for i = 1, ..., h. Next, for each m_j , find the index i for which $c_i < m_j < c_{i+1}$

Complexity

This algorithm has a linear-time complexity.

The Fast Legendre Transform

Alexander Hewer

Outlin

Motivation

The Legendre Transform

Definition Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm Observations The Algorithm Remarks

Summary

Remarks

- One can prove that computing the dicrete Legendre Transform of a function converges towards the continuous one
- Note: n = m is required to obtain good numerical accuracy
- The convex step of the algrithm is only necessary if the signal is non-convex
- Applying the algorithm twice to a non-convex signal yields the convex hull of the signal

The Fast Legendre Transform

Alexander Hewer

Outlin

Motivatio

The Legendre Transform

Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm Observations The Algorithm Remarks

Summary

Summary

- The Legendre Transform maps a function to its family of tangents
- It is its own inverse (only for convex functions)
- The presented algorithm transforms even non-convex signals
- The Legendre Transform can be used to speed up morphological operations like dilation

The Fast Legendre Transform

Alexander Hewer

Outline

Motivatior

The Legendre Transform Definition Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

References I

Leo Dorst and Rein Van den Boomgaard.
Morphological signal processing and the slope transform.

Signal Process., 38(1):79–98, 1994.

- Henk J. A. M. Heijmans and Petros Maragos. Lattice calculus of the morphological slope transform. Signal Process., 59(1):17–42, 1997.
- J.-B. Hiriart-Urruty and C. Lemarechal. Convex Analysis and Minimization Algorithms. Springer-Verlag, 1993.

Yves Lucet.

Faster than the fast legendre transform, the linear-time legendre transform.

Numerical Algorithms, 16:171–185, 1997.

The Fast Legendre Transform

Alexander Hewer

Outline

Motivatior

The Legendre Transform Definition Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm

Observations The Algorithm Remarks

Summary

References II

Joachim Weickert.

Differential equations in image processing and computer vision.

Lecture notes, Lecture 21:11–12, 2006/2007.

Wikipedia.

www.wikipedia.org.

The Fast Legendre Transform

Alexander Hewer

Outlin

Motivatio

The Legendre Transform Definition Interpretation Backtransformation

Concepts from convex analysis

A linear-time algorithm Observations

The Algorith Remarks

Summary

References

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙