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Motivation

n Many observed images are often noisy

n several methods to reduce the noise but various of them are slow 
(simulated annealing)

n If image has many local minima:
– Graph cuts can be used to find the global one

n Today: 

Presentation of two (similar) algorithms that use graph cuts

n Efficient with respect to two large moves:
– α-β swap 

– α-expansion 

∃∃∃∃
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Energy Function

n Given:

Noisy image with pixels p    P initialized with labels           
– For image restauration: L represents intensities

n Goal:

Finding a labeling  f that assignes each pixel p a label            
– f has to be piecewise smooth and consistent with the observed data.

n Term of energy minimization:

- with          where i = intensity

- with selected distance function V

(N = set of pairs of adjacent pixels)
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Energy Function (2)

n Choice of              and V respectively important 

n Differentiation of V in 2 classes:

– V metric

– V semimetric

n Definitions:

– V semimetric

– V metric V semimetric
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Distance Functions 
Examples

n Semimetric:

– , a truncated quadratic distance

n Metric:

– , a truncated absolute distance

– , with 

also called Potts model
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α-β swap
Graph

n If V semimetric→ α-β swap ( = Reassignment of labels α and β)

n Given:

1-D image with pixels p     

n α-β swap: subgraph         consists

of nodes: p, q, …, w  

n Each pixel is connected with 

labels (here: α and β) (t-links)

n Adjacent pixels are connected 

with an edge (n-links)

n Each pixel p corresponds only 

to one label. I.e. p or p

n All edges have weights

∈P∈∈∈∈

αP∈∈∈∈ βP∈∈∈∈

αβG

αβP∈∈∈∈
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α-β swap
Graph Cuts

n Only allowed: Separation of one pixel from one label!

n Only 4 possibilities:

– If                    then                  (a)

– If                    then                  (b)

– If                    then                  (c)

– If                    then                 ‚(d)‘

n Impact:

has an effect on E( f ),  otherwise             = 0  

Ctt qp ∈αα ,

Ctt qp ∈ββ ,

Ctt qp ∈αβ ,

Ctt qp ∈βα ,
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α-β swap
Properties

n Leads to a labeling     corresponding to a cut C on        :

n Lemma 1:

A labeling      corresponding to a cut C on        is one α-β swap away from 

the initial labeling  f.

n Furthermore:

The cost of a cut C on        is |C| =              + h (h constant).
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n Corollary 1:

The optimal α-β swap from f is       where C is the minimum cut on        .

n Note: Minimal cut C = cut with smallest costs whereas |C|  = 

n Example of an α-β swap (schematical illustration):

α-β swap
Result

C
f
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α-expansion
Graph

n If V metric→ α-expansion

n Analogue to graph cuts for an α-β swap

n Notice following differences:

- The label to be extended is α, all the 

other labels are combined in one label 

called α

- Graph G  consists of additional 

nodes a,b,… with corresponding 

edges             …to α introduced at the 

boundaries between partition 

sets     for l   L

,, αα
ba tt

lP ∈
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α-expansion
Graph Cuts and Results

n Graph cuts has to be 

performed in this way

(again 4 possibilities):
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α-expansion
Graph Cuts and Results

n Graph cuts has to be 

performed in this way

(again 4 possibilities):

n Similar result like for an α-β swap:

The optimal α-expansion from f is       where C is the minimum cut on G  .C
f α
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α-expansion
Graph Cuts and Results

n Graph cuts has to be 

performed in this way

(again 4 possibilities):

n Similar result like for an α-β swap:

The optimal α-expansion from f is       where C is the minimum cut on G  .

n Example: Schematical illustration of an α-expansion:

C
f α
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Algorithms

α-β swap move algorithm: α-expansion move algorithm:

f
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n The algorithms are quiet similar in their structure
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Algorithms

α-β swap move algorithm: α-expansion move algorithm:

f
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n The algorithms are quiet similar in their structure

n Difference: Use of α-β swap and α-expansion respectively in 3.1.

n Both allow a large number of pixels to change their labels simultaniously
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Overview
Comparison of standard move, α-β swap, α-

expansion

Fig. 1: Comparison of standard and large moves from a given initial labeling 
(a). The number of labels is |L| = 3.

(a) Initial labeling

(b) Standard move like ICM (Iterative Conditional Modes) or annealing 

→ change of one single pixel

(c) α-β swap

(d) α-expansion
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Example (1)

(a) (b) (c) (d)

Fig. 2: Diamond image

(a) Noisy diamond image

Energy minimization with:

(b) Simulated annealing

(c) α-expansion move

(d) α-β swap move
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Example (2)
Real Stereo Imagery

(a) (b)

(c) (d) (e)

Fig. 3: Original image(-pair) (a) with ground truth (b). (c) Simulated 

annealing, (d) α-expansion, (e) α-β swap

In this case: The labels l L represent disparities∈∈∈∈
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Summary

n The presented algorithms minimise an energy with data and 

smoothness term

n They use graph cuts to generate a minimum with respect to very 

large moves (α-expansion and α-β swap)

n Graph cuts can be a good tool for solving miscellaneous computer

vision problems

n The presented methods can solve computer vision problems such as

image restauration, stereo and motion
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Questions?
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Thank you for listening!




