Seminar: Numerical Algorithms for Image Analysis

Patrick Koberski

Fast Approximate Energy Minimization via Graph Cuts

Summer Term 2007 Saarland University, Germany padekobeuni@gmx.de

Contents

- Motivation
- Energy function
- Distance function
- What are graph cuts (1-D)?
- In this context:
 - What is an α - β swap?
 - What is an α -expansion?
- Presentation of the algorithms
- Some examples

Motivation

- Many observed images are often noisy
- ∃ several methods to reduce the noise but various of them are slow (simulated annealing)
- If image has many local minima:
 - Graph cuts can be used to find the global one
- **Today:**

Presentation of two (similar) algorithms that use graph cuts

- Efficient with respect to two large moves:
 - $-\alpha$ - β swap
 - α -expansion

Energy Function

Given:

Noisy image with pixels $p \in P$ initialized with labels $f_p \in L$

– For image restauration: *L* represents intensities

■ <u>Goal:</u>

Finding a labeling f that assignes each pixel p a label $f_p \in L$

- f has to be piecewise smooth and consistent with the observed data.

Term of energy minimization:

$$E(f) = E_{data}(f) + E_{smooth}(f)$$

-
$$E_{data}(f) = \sum_{p \in P} D_p(f_p)$$
 with $D_p(f_p) = (f_p - i_p)^2$ where i = intensity
- $E_{smooth}(f) = \sum_{\{p,q\} \in N} V_{\{p,q\}}(f_p, f_q)$ with selected distance function V
(N = set of pairs of adjacent pixels)

Energy Function (2)

- Choice of E_{smooth} and V respectively important
- Differentiation of *V* in **2 classes**:
 - *V* metric
 - V semimetric
- **Definitions:**

- V semimetric
$$\Leftrightarrow \begin{cases} V(\alpha, \beta) = 0 \Leftrightarrow \alpha = \beta \\ V(\alpha, \beta) = V(\beta, \alpha) \ge 0 \end{cases}$$

- V metric \Leftrightarrow V semimetric \land $V(\alpha,\beta) \leq V(\alpha,\gamma) + V(\gamma,\beta)$

Distance Functions *Examples*

Semimetric:

- $V(\alpha, \beta) = \min(K, \|\alpha - \beta\|^2)$, a truncated quadratic distance

Metric:

- $V(\alpha, \beta) = \min(K, \|\alpha - \beta\|)$, a truncated absolute distance

-
$$V(\alpha, \beta) = K \cdot \delta(\alpha \neq \beta)$$
, with $\delta(x) = \begin{cases} 1 & \text{if } x \text{ is true} \\ 0 & \text{else} \end{cases}$

also called **Potts model**

α-β swap Graph

If *V* semimetric $\rightarrow \alpha$ - β swap (= Reassignment of labels α and β)

Given:

1-D image with pixels $p \in P$

- α-β swap: subgraph $G_{\alpha\beta}$ consists of nodes: *p*, *q*, ..., *w* ∈ $P_{\alpha\beta}$
- Each pixel is connected with labels (here: α and β) (t-links)
- Adjacent pixels are connected with an edge (n-links)
- Each pixel *p* corresponds only to one label. I.e. $p \in P_{\alpha}$ or $p \in P_{\beta}$
- All edges have weights

α-β swap *Graph Cuts*

Only allowed: Separation of one pixel from one label!

Impact:

 $e_{\{p,q\}} \in C \iff E_{smooth}$ has an effect on E(f), otherwise $E_{smooth} = 0$

8

α-β swap *Properties*

• Leads to a labeling f^{c} corresponding to a cut C on $G_{\alpha\beta}$:

$$f_p^{C} = \begin{cases} \alpha & \text{if } t_p^{\alpha} \in C \text{ for } p \in P_{\alpha\beta} \\ \beta & \text{if } t_p^{\beta} \in C \text{ for } p \in P_{\alpha\beta} \\ f_p & \text{for } p \in P, p \notin P_{\alpha\beta} \end{cases}$$

Lemma 1:

A labeling f^{C} corresponding to a cut C on $G_{\alpha\beta}$ is one α - β swap away from the initial labeling f.

Furthermore:

The cost of a cut *C* on $G_{\alpha\beta}$ is $|C| = E(f^{C}) + h$ (*h* constant).

α-β swap Result

Corollary 1:

The optimal α - β swap from f is f^{C} where C is the minimum cut on $\mathbf{G}_{\alpha\beta}$.

- Note: Minimal cut C = cut with smallest costs whereas $|C| = \sum_{e \in C} weight(e)$
- **Example** of an α - β swap (schematical illustration):

α-expansion *Graph*

- If $V \operatorname{metric} \to \alpha$ -expansion
- Analogue to graph cuts for an α - β swap
- Notice following <u>differences:</u>
- The label to be extended is α , all the other labels are combined in one label called $\overline{\alpha}$
- Graph G_{α} consists of additional nodes a, b, ... with corresponding edges $t_{a}^{\overline{\alpha}}, t_{b}^{\overline{\alpha}}, ...$ to $\overline{\alpha}$ introduced at the boundaries between partition sets P_{l} for $l \in L$

α-expansion Graph Cuts and Results

 Graph cuts has to be performed in this way (again 4 possibilities):

α-expansion Graph Cuts and Results

 Graph cuts has to be performed in this way (again 4 possibilities):

Similar result like for an α - β swap:

The optimal α -expansion from f is f^{C} where C is the minimum cut on G_{α} .

α-expansion Graph Cuts and Results

 Graph cuts has to be performed in this way (again 4 possibilities):

Similar result like for an α - β swap:

The optimal α -expansion from f is f^{C} where C is the minimum cut on G_{α} .

<u>Example</u>: Schematical illustration of an α -expansion:

Algorithms

α - β swap move algorithm:

- 1. Start with an arbitrary labeling f
- 2. Set success := 0
- 3. For each pair of labels $\{\alpha, \beta\} \subset L$
 - 3.1. Find $\hat{f} = \arg \min E(f')$ among f' within one $\alpha - \beta$ swap of f
 - 3.2. If $E(\hat{f}) < E(f)$, set $f \coloneqq \hat{f}$
- 4. If success =1 goto 2
- 5. Return f

α-expansion move algorithm:

- 1. Start with an arbitrary labeling f
- 2. Set success := 0
- 3. For each label $\alpha \in L$
 - 3.1. Find $\hat{f} = \arg \min E(f')$ among f' within one α - expansion of f
- 3.2. If $E(\hat{f}) < E(f)$, set $f \coloneqq \hat{f}$
- 4. If success =1 go to 2
- 5. Return f
- The algorithms are quiet similar in their structure

Algorithms

- The algorithms are quiet similar in their structure
- **Difference:** Use of α - β swap and α -expansion respectively in 3.1.
- Both allow a large number of pixels to change their labels simultaniously

Overview *Comparison of standard move, a-β swap, aexpansion*

Fig. 1: Comparison of standard and large moves from a given initial labeling (a). The number of labels is |L| = 3.

- (a) Initial labeling
- (b) Standard move like ICM (Iterative Conditional Modes) or annealing
 - \rightarrow change of one single pixel
- (c) α - β swap
- (d) α -expansion

Example (1)

(a) Noisy diamond image *Energy minimization with:*(b) Simulated annealing
(c) α-expansion move
(d) α-β swap move

Example (2) *Real Stereo Imagery*

Fig. 3:Original image(-pair) (a) with ground truth (b). (c) Simulated
annealing, (d) α -expansion, (e) α - β swapIn this case:The labels $l \in L$ represent disparities

Summary

- The presented algorithms minimise an energy with data and smoothness term
- They use graph cuts to generate a minimum with respect to very large moves (α-expansion and α-β swap)
- Graph cuts can be a good tool for solving miscellaneous computer vision problems
- The presented methods can solve computer vision problems such as image restauration, stereo and motion

References

- Fast Approximate Energy Minimization via Graph Cuts Yuri Boykov, Olga Veksler, Ramin Zabih
 In *International Conference on Computer Vision* (ICCV), vol. I, pp. 377--384, 1999.
- Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin In *Network Flows: Theory, Algorithms and Applications*, Prentice Hall, pp. 177--180, 1993
- Segmentation by grouping junctions
 H. Ishikawa, D. Geiger
 In *IEEE Conference on Computer Vision and Patern Recognition*, pp. 125--131, 1998
- http://de.wikipedia.org

Questions? 22

