

talk by

Sebastian Limbach

based on a prizewinning paper by

Thomas Brox, Andrés Bruhn, Nils Papenberg and Joachim Weickert

Outline

- Motivation
- A novel variational approach
- Coarse-to-fine warping
- Summary

What is optical flow estimation?

- displacement field between two images
- correspondence problem
- understanding of details of existing methods and quality of new methods have increased dramatically

Motivation

						• -	→ → →	→ → → ·	.	
				•		•				
				•	→ → -					
				•		•				
				•		•				
\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow				*	→ → -	•			→ → →	·
* * * * • • • • •				** * •	• • •	< →				·
		• • • •	• • •	• • •	• • •	• • •	• • • •	• •	••	* *
··· · · · · · · · ·		• • • •	• • •	• • •	• • •	• • •		* * * *	• •	• •
	* * * * *	• • • •	• • •	• • •	• • •	• • •			• •	• •
***	* * * * *	• • • •	• • •	• • •	• • •	• • •			• •	• •
				• • •					• •	• •
			• • •		• • •				• •	• •
~~~~~	~ ~ ~ ~ ~		• • •						• •	• •
////////	////	· · · ·							• •	• •
////////	////									• •
////////	////									
										2.2
	****			11						
	****			11		111				
~,,,,,,,,,,,,,	* * * * * *			11		111				$\langle \cdot \rangle$
~,,,,,,,,,,,,,,	* * * * * *			11		ii				$\langle \cdot \rangle$
*******	1111	1111	111	11	iii	ii	iii	iii		11
* * * * * * * * * * *	* * * * * *	1111	111	11	iii	ii	iii	iii		11
× + + + + + + + + + + + + + + + + + + +	* 1 * 1 * 1 *	1111	111	i i l	ΙI	11	111	iiii	iii	11
111111111	1111									• •

## Motivation

## **Applications**

- Motion planning e.g. collision avoidance
- Computer Vision

- - -

Video compression (although mpeg uses much simpler algorithms)

## Motivation

### The new approach...

- ...combines concepts from several methods for optical flow estimation
- ...avoids many shortcomings of those methods
- ...outperforms all methods from the literature so far
- ...is very robust with respect to noise and parameter variations

#### High Accuracy Optical Flow Estimation Based on a Theory for Warping The variational approach

#### **Basic Ideas**

Given: Image sequence

I(x, y, t)

Required: Displacement vectors

$$(u(x, y, t), v(x, y, t), 1)^{T}$$

#### High Accuracy Optical Flow Estimation Based on a Theory for Warping The variational approach

### Variational method

- different constraints on displacement vectors -> energy functional
- looking for functions u and v which minimize the energy functional

grey value constancy assumption

$$I(x, y, t) = I(x+u, y+v, t+1)$$

High Accuracy Optical Flow Estimation Based on a Theory for Warping

 linearisation by Taylor Series expansion yields the famous optical flow constraint

$$I_x u + I_y v + I_t = 0$$

- no linearisation in this approach
- gradient constancy assumption

$$\nabla I(x, y, t) = \nabla I(x+u, y+v, t+1)$$

again no linearisation

# Constraints

## Smoothness assumption

 no interaction between neighbouring pixels so far

High Accuracy Optical Flow Estimation

<u>Based on a Theory for Warping</u>

- leads to problems where the flow field vanishes or cannot fully be determined (aperture problem)
- further assumption: (piecewise) smoothness of the flow field

## **Putting it all together**

$$E_{Data}(u,v) = \int_{\Omega} \Psi(|I(\vec{x}+\vec{w})-I(\vec{x})|^2 + \gamma |\nabla I(\vec{x}+\vec{w})-\nabla I(\vec{x})|^2) d\vec{x}$$

- The energy functional integrates over the whole image domain  $\boldsymbol{\Omega}$ 

• 
$$\vec{x} := (x, y, t)^T$$

•  $\vec{w} := (u, v, 1)^T$ 

## **Putting it all together**

$$E_{Data}(u,v) = \int_{\Omega} \Psi(|I(\vec{x}+\vec{w})-I(\vec{x})|^2 + \gamma |\nabla I(\vec{x}+\vec{w})-\nabla I(\vec{x})|^2) d\vec{x}$$

grey value constancy assumption

## **Putting it all together**

$$E_{Data}(u,v) = \int_{\Omega} \Psi(|I(\vec{x}+\vec{w})-I(\vec{x})|^2 + \gamma |\nabla I(\vec{x}+\vec{w})-\nabla I(\vec{x})|^2) d\vec{x}$$

- gradient constancy assumption
- $\gamma \ge 0$ , weight between both assumptions

## **Putting it all together**

$$E_{Data}(u,v) = \int_{\Omega} \Psi(|I(\vec{x}+\vec{w})-I(\vec{x})|^2 + \gamma |\nabla I(\vec{x}+\vec{w})-\nabla I(\vec{x})|^2) d\vec{x}$$

 to get a more robust energy, an increasing, convex function is applied

• 
$$\Psi(s^2) = \sqrt{s^2 + \epsilon^2}$$
,  $\epsilon = 0.001$ 

## **Putting it all together**

$$E_{Smooth}(u, v) = \int_{\Omega} \Psi(|\nabla_3 u|^2 + |\nabla_3 v|^2) d\vec{x}$$

- smoothness assumption
- penalising the total variation of the flow field
- spatial / spatio-temporal gradient

$$\nabla := (\partial x, \partial y)^T, \nabla_3 := (\partial x, \partial y, \partial t)^T$$

### **Putting it all together**

$$E(u, v) = E_{Data} + \alpha E_{Smooth}$$

- regularisation parameter  $\alpha > 0$
- goal is to find functions u and v that minimise this energy
- the calculus of variations states that minimising functions must fulfil the Euler-Lagrange equations

# Minimisation

#### **Some abbreviations**

$$I_{x} := \partial_{x} I(\vec{x} + \vec{w})$$

$$I_{y} := \partial_{y} I(\vec{x} + \vec{w})$$

$$I_{z} := I(\vec{x} + \vec{w}) - I(\vec{x})$$

$$I_{xx} := \partial_{xx} I(\vec{x} + \vec{w})$$

$$I_{xy} := \partial_{xy} I(\vec{x} + \vec{w})$$

$$I_{yy} := \partial_{yy} I(\vec{x} + \vec{w})$$

$$I_{xz} := \partial_{x} I(\vec{x} + \vec{w}) - \partial_{x} I(\vec{x})$$

$$I_{yz} := \partial_{y} I(\vec{x} + \vec{w}) - \partial_{y} I(\vec{y})$$

High Accuracy Optical Flow Estimation Based on a Theory for Warping

# Minimisation

#### **Euler-Lagrange-Equations**

$$\Psi'(I_{z}^{2}+\gamma(I_{xz}^{2}+I_{yz}^{2}))\cdot(I_{x}I_{z}+\gamma(I_{xx}I_{xz}+I_{xy}I_{yz})) -\alpha \operatorname{div}(\Psi'(|\nabla_{3}u|^{2}+|\nabla_{3}v|^{2})\nabla_{3}u)=0 \Psi'(I_{z}^{2}+\gamma(I_{xz}^{2}+I_{yz}^{2}))\cdot(I_{y}I_{z}+\gamma(I_{yy}I_{yz}+I_{xy}I_{xz})) -\alpha \operatorname{div}(\Psi'(|\nabla_{3}u|^{2}+|\nabla_{3}v|^{2})\nabla_{3}v)=0$$

High Accuracy Optical Flow Estimation Based on a Theory for Warping

- non-convex functions
- non-linear functions

#### High Accuracy Optical Flow Estimation Based on a Theory for Warping Numerical Approximation

### **Fixed point iteration**

 $\Psi'((I_{z}^{k+1})^{2} + \gamma((I_{xz}^{k+1})^{2} + (I_{yz}^{k+1})^{2})) \cdot (I_{x}^{k}I_{z}^{k+1} + \gamma(I_{xx}^{k}I_{xz}^{k+1} + I_{xy}^{k}I_{yz}^{k+1}))$  $- \alpha \operatorname{div}(\Psi'(|\nabla_{3}u^{k+1}|^{2} + |\nabla_{3}v^{k+1}|^{2})\nabla_{3}u^{k+1}) = 0$ 

- index k indicates iteration step
- $w^k = (u^k, v^k, 1)^T$
- starting with initial values, we are looking for new values w^{k+1} in each step
- still non-linear

#### High Accuracy Optical Flow Estimation Based on a Theory for Warping Numerical Approximation

### **Taylor Series Expansion**

$$I_{z}^{k+1} \approx I_{z}^{k} + I_{x}^{k} du^{k} + I_{y}^{k} dv^{k}$$
$$I_{xz}^{k+1} \approx I_{xz}^{k} + I_{xx}^{k} du^{k} + I_{xy}^{k} dv^{k}$$
$$I_{yz}^{k+1} \approx I_{yz}^{k} + I_{xy}^{k} du^{k} + I_{yy}^{k} dv^{k}$$

- first order expansions for I₂ are applied
- linearisation in the numerical scheme instead of the model assumptions
- unknowns splitted:

$$u^{k+1} = u^k + du^k$$
,  $v^{k+1} = v^k + dv^k$ 

#### High Accuracy Optical Flow Estimation Based on a Theory for Warping Numerical Approximation

### Second fixed point iteration

- to remove non-linearity in ψ', a second fixed point iteration is applied
- applied to discrete image data we end up at a linear system of equations in the unknown increments du^{k,l+1} and dv^{k,l+1}
- can be solved with common numerical methods (Gauss-Seidel, SOR iterations, ...)

- pyramid of images with a scaling factor η
- algorithm starts at the coarsest scale with initial values
- inner fixed point iteration on this scale gives dw⁰ and therefore w¹ = w⁰ + dw⁰
- on the next finer scale the second frame is warped by w¹ using bilinear interpolation
- the increments du¹ and dv¹ are computed and one gets w² etc.

## Warping

initial values



coarse













### What has been reached?

- by splitting the unknowns and using the coarseto-fine warping we have to solve a difference problem at each scale
- we end up solving a series of convex problems instead of the non-convex initial problem
- this strategy is needed to avoid local minima
- the warping strategy is theoretically justified

## **Connection to previous approaches (1)**

- many optic flow methods use the linearised optical flow constraint (vs. non-linearised OFC)
- convex energy functional, but the model cannot handle large displacements well (vs. nonconvex energy functional)
- therefore the coarse-to-fine warping is applied
   only the (small) difference dw has to be computed
- at each scale, a separate linearised energy functional is minimised

## **Connection to previous approaches (2)**

- similar results in both approaches
- both approaches result in equivalent Euler-Lagrange equations
- -> the "linearised OFC / warping" approach minimises a non-linearised constancy assumption by means of fixed point iteration on w

# Evaluation

#### High Accuracy Optical Flow Estimation Based on a Theory for Warping

### **Benchmark results (1)**

Yosemite with clouds			Yosemite without clouds			
Technique	AAE	STD	Technique AAE STD			
Nagel [5]	$10.22^{\circ}$	$16.51^{\circ}$	Ju et al. [12] $2.16^{\circ} 2.00^{\circ}$			
Horn-Schunck, mod. [5]	$9.78^{\circ}$	$16.19^{\circ}$	Bab-Hadiashar–Suter [4] 2.05° 2.92°			
Uras <i>et al.</i> [5]	$8.94^{\circ}$	$15.61^{\circ}$	Lai–Vemuri [13] 1.99° 1.41°			
Alvarez <i>et al.</i> [2]	$5.53^{\circ}$	$7.40^{\circ}$	Our method (2D) $1.59^{\circ} 1.39^{\circ}$			
Weickert et al. [24]	$5.18^{\circ}$	$8.68^{\circ}$	Mémin–Pérez [16] 1.58° 1.21°			
Mémin–Pérez [16]	$4.69^{\circ}$	$6.89^{\circ}$	Weickert <i>et al.</i> [24] 1.46° 1.50°			
Our method (2D)	$2.46^{\circ}$	$7.31^{\circ}$	Farnebäck [10] 1.14° 2.14°			
Our method (3D)	$1.94^{\circ}$	$6.02^{\circ}$	Our method (3D) $0.98^{\circ} 1.17^{\circ}$			

**Table 1.** Comparison between the results from the literature with 100 % density and our results for the *Yosemite* sequence with and without cloudy sky. AAE = average angular error. STD = standard deviation. 2D = spatial smoothness assumption. 3D = spatio-temporal smoothness assumption.

Source: T. Brox, A. Bruhn, N. Papenberg, J. Weickert: "High Accuracy Optical Flow Estimation Based on a Theory for Warping"

## Evaluation

### **Benchmark results (2)**

Yosemite with clouds			Yosemite without clouds			
$\sigma_n$	AAE	STD	 $\sigma_n$	AAE	STD	
0	$1.94^{\circ}$	$6.02^{\circ}$	 0	$0.98^{\circ}$	$1.17^{\circ}$	
10	$2.50^{\circ}$	$5.96^{\circ}$	10	$1.26^{\circ}$	$1.29^{\circ}$	
20	$3.12^{\circ}$	$6.24^{\circ}$	20	$1.63^{\circ}$	$1.39^{\circ}$	
30	$3.77^{\circ}$	$6.54^{\circ}$	30	$2.03^{\circ}$	$1.53^{\circ}$	
40	$4.37^{\circ}$	$7.12^{\circ}$	40	$2.40^{\circ}$	$1.71^{\circ}$	

**Table 2.** Results for the *Yosemite* sequence with and without cloudy sky. Gaussian noise with varying standard deviations  $\sigma_n$  was added, and the average angular errors and their standard deviations were computed. AAE = average angular error. STD = standard deviation.

Source: T. Brox, A. Bruhn, N. Papenberg, J. Weickert: "High Accuracy Optical Flow Estimation Based on a Theory for Warping"

# Evaluation

#### High Accuracy Optical Flow Estimation Based on a Theory for Warping

## **Benchmark results (3)**

 3D - spatio-temporal method								
 reduction	outer fixed	inner fixed	SOR	computation	AAE			
 factor $\eta$	point iter.	point iter.	iter.	time/frame				
0.95	77	5	10	23.4s	$1.94^{\circ}$			
0.90	38	2	10	5.1s	$2.09^{\circ}$			
0.80	18	2	10	2.7s	$2.56^{\circ}$			
 0.75	14	1	10	1.2s	$3.44^{\circ}$			

Table 4. Computation times and convergence for Yosemite sequence with clouds.

Source: T. Brox, A. Bruhn, N. Papenberg, J. Weickert: "High Accuracy Optical Flow Estimation Based on a Theory for Warping"

# Summary

#### High Accuracy Optical Flow Estimation Based on a Theory for Warping

### The new variational approach

- uses non-linearised model assumptions
- Inearisations in the numerical scheme
- coarse-to-fine warping applied for better approximation of the global minimum of the non-convex energy functional

## Summary

## **Warping Methods**

- if the optical flow constraint is linearised, the functional is easier to solve
- to deal with larger displacements, a coarse-tofine warping is applied
- one can show that this strategy in fact solves a non-linearised optical flow constraint
- -> theoretical foundation for the warping strategy

## References

 T. Brox, A. Bruhn, N. Papenberg, J. Weickert: "High Accuracy Optical Flow Estimation Based on a Theory for Warping", Proc. 8th European Conference on Computer Vision, vol. 4, pp. 25-36, Berlin, Heidelberg: Springer Verlag 2004.

High Accuracy Optical Flow Estimation

Based on a Theory for Warping

- E. Mémin, P. Pérez: "Hierarchical estimation and segmentation of dense motion fields", International Journal of Computer Vision, vol. 46(2), pp. 129-155, 2002.
- A. Bruhn: "Correspondence Problems in Computer Vision", lecture notes, Summer Term 2007.
- B. Burgeth: "Image Processing and Computer Vision", lecture notes, Winter Term 2006/2007.