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Diffusion

physical process, which
◮ equilibrates concentration differences

Fick’s law (isotropic case):

j
︸︷︷︸

flux

= − g
︸︷︷︸

diffusivity

· ∇ u
︸︷︷︸

concentration

◮ preserves masses
continuity equation:

∂tu = −div j

⇒ yields diffusion equation

∂tu = div (g · ∇u)
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Diffusion
Continuous filter process

diffusion equation
∂tu = div (g · ∇u)

◮ image domain Ω := (0, a1) × . . . × (0, am)

◮ image f (x): bounded mapping from f : Ω 7→ R

◮ filtered image u(x , t): solution of the (nonlinear) diffusion
equation

∂tu = div
(

g(|∇uσ|
2) · ∇u

)

with u(x , 0) = f (x) and ∂nu := 0 on ∂Ω (n denotes the
normal to the image boundary ∂Ω)
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Diffusion
Continuous filter process (cont’d)

filtered image computed as solution of nonlinear diffusion
equation

∂tu = div
(

g(|∇uσ|
2) · ∇u

)

,

(Catté et al.) where
◮ ∇uσ: gradient of a Gaussian smoothed version of u:

∇uσ := ∇ (Kσ ∗ u)

Kσ :=
1

(2 · π · σ2)
m
2
· exp

(

−
|x |2

2 · σ2

)

◮

g(s) :=

{

1, s 6 0

1 − exp
(

− 3.315
(s/λ)4

)

, s > 0.
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Explicit and semi-implicit schemes
one-dimensional case

in the one-dimensional case the diffusion equation

∂tu = div
(

g(|∇uσ|
2) · ∇u

)

turns into
∂tu = ∂x

(

g(|∂xuσ|
2) · ∂xu

)

with a discrete approximation we have a vector f ∈ R
N with

components fi , i ∈ J = 1, . . . , N as image, where
◮ pixel i represents some location xi

◮ h represents the grid size
◮ tk := k · τ, k ∈ N0 are discrete time points
◮ τ is the time step size
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Explicit and semi-implicit schemes
One-dimensional case (cont’d)

the simplest approximation is given by

uk+1
i − uk

i

τ
=
∑

j∈N (i)

gk
j + gk

i

2 · h2 ·
(

uk
j − uk

i

)

,

where
◮ uk

i denotes the approximation of u(xi , tk )

◮ N (i) is the neighborhood of pixel i
◮ gk

i approximates the term g(|∇u(xi , tk )|2):

gk
i := g




1
2
·
∑

p,q∈N (i)

(

uk
p − uk

q

2 · h

)2
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Explicit and semi-implicit schemes
One-dimensional case (cont’d)

◮ using matrix-vector notation, we can rewrite the equation
from above, yielding

uk+1 − uk

τ
= A(uk) · uk ,

with A(uk ) = (aij(uk )) and

aij(u
k ) :=







gk
i +gk

j

2·h2 , j ∈ N (i)

−
∑

n∈N (i)
gk

i +gk
n

2·h2 , j = i

0, j /∈ N (i) ∧ i 6= j

◮ rearranging the terms gives us the (explicit) iteration
scheme

uk+1 =
(

I + τ · A(uk)
)

· uk .
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Explicit and semi-implicit schemes
From explicit to semi-implicit

◮ in the explicit scheme we have

uk+1 − uk

τ
= A(uk) · uk

◮ modifying the explicit scheme gives us

uk+1 − uk

τ
= A(uk) · uk+1,

which leads to
(

I − τ · A(uk)
)

· uk+1 = uk

◮ in order to compute the solution of this equation we have to
solve a linear system of equations

◮ fortunately this system is tridiagonal
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Explicit and semi-implicit schemes
Thomas algorithm

◮ Gaussian elimination algorithm for tridiagonal matrices
◮ highly efficient (linear complexity)
◮ easy to implement
◮ stable for every strictly diagonally dominant system
◮ given the linear system B · u = d the algorithm computes

the solution in three steps:
1. LR decomposition
2. Forward substitution
3. Backward substitution
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Discrete nonlinear diffusion scale-spaces
Criteria

for discrete scheme type with

u0 = f and uk+1 = A(uk) · uk ∀k ∈ N0

the following criteria have to be fulfilled:

1. continuity of the argument: A ∈ C(RN , RN×N)

2. symmetry: aij = aji ∀i , j ∈ J

3. unit row sum:
∑

j∈J aij = 1 ∀i ∈ J

4. nonnegativity: aij > 0 ∀i , j ∈ J

5. positive diagonal: aii > 0 ∀i ∈ J

6. irreducibility: ∀i , j ∈ J ∃k0, . . . , kr ∈ J :

k0 = i ∧ kr = j ∧ ∀p = 0, . . . , r − 1 : akpkp+1
6= 0
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Discrete nonlinear diffusion scale-spaces
Properties

1. average grey level invariance:

1
N

·
∑

j∈J
uk

j = µ, ∀k ∈ N0,

with µ := 1
N ·
∑

j∈J fj
2. extremum principle:

minj∈J fj 6 uk
i 6 maxj∈J fj , ∀i ∈ J,∀k ∈ N0.

3. smoothing Lyapunov sequences:
◮ the p-norms

||uk ||p :=

(
∑N

i=1
|uk

i |
p
)1/p

are decreasing in k for all p > 1.
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Discrete nonlinear diffusion scale-spaces
Properties

3. ◮ all even central moments

M2n[uk ] :=
1
N

·
∑N

j=1
(uk

j − µ)2n, n ∈ N

are decreasing in k
◮ the entropy

S[uk ] := −
∑N

j=1
uk

j · ln uk
j

is increasing in k (if fj is positive for all j)

4. convergence to a constant steady-state:

limk→∞ uk
i = µ, ∀i ∈ J.
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Schemes in higher dimensions
Higher-dimensional case

◮ in higher dimensions the diffusion equation is

∂tu =
∑m

l=1
∂xl

(

g(|∇uσ|
2) · ∂xl u

)

.

◮ in matrix-vector notation we get

uk+1 =
(

I + τ ·
∑m

l=1
Al(u

k )
)

· uk

for the explicit scheme
◮ and

uk+1 =
(

I − τ ·
∑m

l=1
Al(u

k )
)−1

· uk

for the semi-implicit scheme, with Al = (aijl)ij correspond-
ing to the derivatives along the l-th coordinate axis.
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AOS scheme
Additive operator splitting scheme

◮ time step size in explicit schemes gets smaller for higher
dimensions

◮ matrix in semi-explicit scheme not tridiagonal and thus not
solvable by Thomas algorithm

◮ other algorithms for solving the system of equations are
rather slow or need significantly more storage

⇒ modifying the semi-implicit scheme

uk+1 =
(

I − τ ·
∑m

l=1
Al(u

k )
)−1

· uk

we get

uk+1 =
1
m

·
∑m

l=1

(

I − m · τ · Al(u
k )
)−1

· uk
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AOS scheme
Properties

◮ approximates the same continuous diffusion process and
has the same approximation order

◮ creates a discrete scale-space for all step sizes
◮ the operators

Bl(u
k ) := I − m · τ · Al(u

k )

describe one-dimensional diffusion processes
◮ in contrast to multiplicative splittings, as for example the

locally one-dimensional scheme, all coordinate axes are
treated in the same manner
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AOS scheme
Regularization

◮ presmoothing uσ = Kσ ∗ u
◮ Gaussian convolution with standard deviation σ is

equivalent to linear diffusion filtering for some time
T = σ2/2

◮ linear diffusion process is separable, therefore
multiplicative splitting can be used

◮ can be computed efficiently with Thomas algorithm
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AOS scheme
Algorithmic structure

one AOS step in m dimensions:

input: u = un

◮ regularization: v := Kσ ∗ u
◮ calculate diffusivity g(|∇v |2)
◮ create copy: f := u
◮ initialize sum: u := 0
◮ for l = 1, . . . , m:

calculate v := (m · I − m2 · τ · Al)
−1 · f :

solve N/Nl tridiagonal systems of size Nl

with Thomas algorithm
update u := u + v

output: u = un+1
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Results
Gauss

Figure: Nonlinear diffusion filtering of a Gaussian-like test image
(λ = 8, σ = 1.5). Top left: Original image, Ω = (0, 101)2.
Top right: Explicit scheme, 800 iterations, τ = 0.25.
Bottom: AOS scheme, 800/200/40/10 iterations, τ = 0.25/1/5/20.
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Results
Brain

Figure: Nonlinear diffusion filtering of a medical image
(λ = 2, σ = 1). Top left: Original image, Ω = (0, 255) × (0, 308).
Top right: Explicit scheme, 800 iterations, τ = 0.25.
Bottom: AOS scheme, 800/200/40/10 iterations, τ = 0.25/1/5/20.
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Summary

additive operator scheme for nonlinear diffusion filter:
◮ satisfies criteria for nonlinear diffusion scale-spaces
◮ easy to implement, efficient, fast and unconditionally stable
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Thank you

Thank you!
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Appendix
Multiplicative vs additive splitting

Figure: (Non-)Commutation of nonlinear diffusion operators:
difference between filtering prior to rotation by 90 degrees, and
rotation prior to filtering. Test image: Brain (λ = 2, σ = 1, τ = 20, 10
iterations). Multiplicative splitting (left) treats x - and y -axes differently.
Additive operator splitting (right) treats all axes equally.
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Appendix
Efficiency and accuracy

Figure: Tradeoff between efficiency and accuracy of nonlinear
diffusion solvers. Test image: Brain (λ = 2, σ = 1, stopping time
T = 200). Hardware: one R10000 processor on an SGI Challenge
XL.
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