
Mathematical Foundations of Computer Vision

Example Solution – Assignment 7

Solution of Exercise No. 1
Assume that the following essential matrix is given:

E =

 0 0 0√
2 0

√
2

0 2 0

 (1)

Compute the correct pose (R, T ) from E.

First, we compute the SVD of

E =

 0 0 0√
2 0

√
2

0 2 0

 .

• computation of B = ET E:

ET E =

0
√

2 0
0 0 2
0

√
2 0

  0 0 0√
2 0

√
2

0 2 0

 =

2 0 2
0 4 0
2 0 2


• eigenvalue of ET E: λ1,2 = 4 > 0 and λ3 = 0, because

det(B − λI) =

∣∣∣∣∣∣
2− λ 0 2

0 4− λ 0
2 0 2− λ

∣∣∣∣∣∣
= (2− λ)2(4− λ)− 4(4− λ)

= (4− 4λ + λ2)(4− λ)− 16 + 4λ

= −λ3 + 8λ2 − 16λ

= −λ(λ2 − 8λ + 16)

= −λ(λ− 4)2

• matrix V contains the normalized eigenvectors of ET E:

Eig(B, 4) = ker

−2 0 2
0 0 0
2 0 −2


=<

1
0
1

 ,

0
1
0

 >

=< v1, v2 >

Eig(B, 0) = ker

2 0 2
0 4 0
2 0 2


=

−1
0
1


= v3
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Now, we normalise the vectors v1, v2 and v3:

v1 =
1√
2

1
0
1


v2 =

0
1
0


v3 =

1√
2

−1
0
1



This leads to the matrix

V = (v1|v2|v3)

=
1√
2

1 0 −1
0

√
2 0

1 0 1


• diagonal matrix Σ:

Σ = diag(
√

λ1,
√

λ2,
√

λ3) = diag(2, 2, 0) =

2 0 0
0 2 0
0 0 0


• matrix U :

u1 :=
1√
λ1

Ev1 =
1
2

 0 0 0√
2 0

√
2

0 2 0

 1√
2

1
0
1

 =

0
1
0


u2 :=

1√
λ2

Ev2 =
1
2

 0 0 0√
2 0

√
2

0 2 0

 0
1
0

 =

0
0
1


⇒u3 :=

1
0
0


⇒U =

0 0 1
1 0 0
0 1 0


We now compute the four possible poses (Ri, Tj), i, j = 1, 2. Plugging in the corresponding matrices we
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obtain:

R1 = UR>z

(
+

π

2

)
V > =

1√
2

 −1 0 1
0

√
2 0

−1 0 −1


R2 = UR>z

(
−π

2

)
V > =

1√
2

 −1 0 1
0 −

√
2 0

1 0 −1


T̂1 = URz

(
+

π

2

)
ΣU> =

 0 0 0
0 0 −2
0 2 0

 , i.e. T1 =

 2
0
0


T̂2 = URz

(
−π

2

)
ΣU> =

 0 0 0
0 0 2
0 −2 0

 , i.e. T2 =

 −2
0
0


What is the correct pose?

We generate a correspondence pair as follows:

• We test for the optical axis, setting ~x1 :=

 0
0
1


• For the epipolar constraint we obtain

~x>2 E~x1 = ~x>2

 0√
2

0

 satisfied e.g. by ~x2 :=

 0
0
1


Therefore a correspondence pair (which has the character of a test pair) is given by intersection of the two
optical axes.

We now invoke the positive depth constraint:

•

(R1, T1) : λ1

 −1 0 1
0

√
2 0

−1 0 −1

  0
0
1

 +

 2
0
0

 = λ2

 0
0
1


⇔


λ1√

2
+ 2
0
−λ1√

2

 = λ2

 0
0
1


which implies that λ1 is negative, so that we discard the pose (R1, T1).

• An analogous computation gives

(R1, T2) :


λ1√

2
− 2
0
−λ1√

2

 = λ2

 0
0
1


which implies that λ2 is negative, so that we discard the pose (R1, T2).

• An analogous computation gives

(R2, T1) :


λ1√

2
+ 2
0
λ1√

2

 = λ2

 0
0
1


which implies that both λ1 and λ2 are negative, so that we discard the pose (R2, T1).
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• An analogous computation gives

(R2, T2) :


λ1√

2
− 2
0
λ1√

2

 = λ2

 0
0
1


which shows that both λ1 and λ2 are positive, so that (R2, T2) is the correct pose.
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