
Mathematical Foundations of Computer Vision

Example Solutions – Assignment 5

Solution of Exercise No. 1
Is S = {v1, v2, v3} with

v1 =

 1
5
4

 , v2 =

 −2
−1
1

 and v3 =

 1
3
2


a generating system of IR3? Give a verbal reasoning of what you compute.

The basis of R3 is given by {~e1, ~e2, ~e3}. Can we find λ1, λ2 and λ3 such that

λ1v1 + λ2v2 + λ3v3 = ~ei

for i = 1, 2, 3? We have a look at 1 −2 1
5 −1 3
4 1 2


︸ ︷︷ ︸

=:A

λ1

λ2

λ3

 = ~ei.

A solution λ exists if and only if the matrix A is regular. It is then given by

λ = A−1 · ~ei.

Here:

det(A) = det

(
−1 3
1 2

)
+ 2 · det

(
5 3
4 2

)
+ det

(
5 −1
4 1

)
= 0.

Thus the matrix A is not regular and the given set S is therefore not a generating system of R3.

Solution of Exercise No. 2
Determine a basis for the space of solutions and its dimension for

2x1 + x2 + 3x3 = 0
x1 + 5x3 = 0

x2 + x3 = 0

The system is given by2 1 3
1 0 5
0 1 1

 x1

x2

x3

 =

0
0
0

 ⇔

2 1 3
0 −1 7
0 1 1

 x1

x2

x3

 =

0
0
0

 ⇔

2 1 3
0 −1 7
0 0 8

 x1

x2

x3

 =

0
0
0

 ⇔

x1

x2

x3

 =

0
0
0

 .

A basis for the space of solutions is


0

0
0

 and its dimension is by definition 0.

Is the following set S = {u1, u2, u3} a generating system or a basis or nothing from these two, of the IR2?

u1 =
(

1
2

)
, u2 =

(
0
3

)
and u3 =

(
2
7

)

The set is a generating system of the R2 because

u1 −
2
3
u2 =

(
1
0

)
∧ 1

3
u2 =

(
0
1

)
.

The set is not a basis of R2 because its members are not linearly independent. It holds

2u1 − u2 + u3 = 0.
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Solution of Exercise No. 3
(a) Let

Bx = b with B =
(

1 1
−2 −2

)
, b =

(
1
−2

)

Determine a basis of the kernel of B.

The kernel of B is the space of solutions of the homogeneous system Bx = 0.(
1 1
−2 −2

)
x =

(
0
0

)
⇔

(
1 1
0 0

)
x =

(
0
0

)
⇔ x = α

(
1
−1

)
.

A basis of the kernel of B is given by
{(

1
−1

)}
.

Determine a particular solution x0 of Bx = b.

Bx = b ⇔
(

1 1
−2 −2

) (
x1

x2

)
=

(
1
−2

)
⇔

(
1 1
0 0

) (
x1

x2

)
=

(
1
0

)
⇔

(
x1

x2

)
=

(
α

1− α

)

A particular solution x0 of Bx = b is given by x0 =
(

0
1

)
.

Give a geometrical interpretation of kernel, x0 and x.

The geometrical interpretations are in the setting abovebecome obvious when plotting kernel, x0 and x in
the domain of x− y-coordinates:

• The kernel is a mapping that always includes the zero point, i.e. the origin. In our case it is a linear
function with slope −1 in the x− y-domain.

• The particular solution x0 is a point which is a member of the set of all possible solutions of the
underlying system.

• The set of solutions x is given by translating the kernel in such a way that the particular solution is
included. In our case we obtain a linear function that runs through the point x0.

(b) Now, let

C =

 1 2 −1 2
3 5 0 4
1 1 2 0


Compute bases for row space and kernel of C.

We compute the kernel of C:

Cx = ~0 ⇔

1 2 −1 2
3 5 0 4
1 1 2 0

 x = ~0 ⇔

1 2 −1 2
0 1 −3 2
0 0 0 0

 x = ~0.

Set x4 = α, x3 = β. Then

x2 = 3x3 − 2x4 = 3β − 2α

x1 = −2x2 + x3 − 2x4 = −5β + 2α.
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Thus a basis of the kernel of C is 


2
−2
0
1

 ,


−5
3
1
0


 .

We compute a basis of the row space of C:1 2 −1 2
3 5 0 4
1 1 2 0

 7→

1 2 −1 2
0 1 −3 2
0 0 0 0



A basis of the row space of C is




1
2
−1
2

 ,


0
1
−3
2


.

(c) Verify at hand of C: The kernel and the row space of a matrix are orthogonal complements.

We check if 
2α− 5β
−2α + 3β

β
α

 ⊥


γ

2γ + δ
−γ − 3δ
2γ + 2δ


holds for all α, β ∈ R. Indeed the kernel and row space of C are orthogonal, because

(2α− 5β) · (γ) + (−2α + 3β) · (2γ + δ) + β · (−γ − 3δ) + α · (2γ + 2δ) = 0

is fulfilled.

(d) Prove rank(A) = rank(A>).

Let k := max(m,n) where the latter define the size of a given matrix A. Then it is clear by definition that

dimC A + dimK A = k

where the lower indices denote the column space and the kernel, respectively.

By part (b) of this exercise, we can also infer that

dimR A + dimK A = k

where the lower index R denotes the row space. Since

dimR A = dimC A>

the assertion follows.

Solution of Exercise No. 4
Determine rank and defect, plus verify the Dimension Theorem for

D =

 2 0 −1
4 0 −2
0 0 0


We consider the issues of importance:
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• rank of D:

rank(D) = rank

2 0 −1
4 0 −2
0 0 0

 = rank

2 0 −1
0 0 0
0 0 0

 = 1

• defect of D:

Dx = 0 ⇔

2 0 −1
4 0 −2
0 0 0

 x =

0
0
0

 ⇔

2 0 −1
0 0 0
0 0 0

 x =

0
0
0


⇔ x = α

0
1
0

 + β

1
0
2

 with α, β ∈ R

Thus the defect of D is 2.

• The dimension theorem is fulfilled:

rank(A) + def(A) = n ⇔ 1 + 2 = 3.

Solution of Exercise No. 5
(a) Determine for the following matrices the eigenvalues, their algebraic multiplicities, and the dimension
of the associated eigenspaces:

E1 = I ∈ IRn×n , E2 =
(

1 1
0 0

)
, E3 =

(
0 1
0 0

)

• E1 = I ∈ Rn×n

– Eigenvalues: Compute zeroes of the characteristic polynomial

det(λI − E1) = det(λI − I) = det((λ− 1)I) = (λ− 1)ndet(I) = (λ− 1)n != 0
⇒λ1 = . . . = λn = 1

– algebraic multiplicity of λ = 1: n

– dimension of the associated eigenspaces:

∗ for λ = 1:

(λI − E1)x = 0 ⇔ 0x = 0
⇒ eigenspace : {~e1, . . . , ~en}

⇒ the dimension of the associated eigenspace is n

⇒ algebraic and geometric multiplicity is the same

• E2 =
(

1 1
0 0

)
– eigenvalues:

det(λI − E2) = det

(
λ− 1 −1

0 λ

)
= (λ− 1) · λ != 0

⇒λ1 = 1, λ2 = 0.
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– algebraic multiplicity of λ = 1: 1
algebraic multiplicity of λ = 0: 1

– dimension of the associated eigenspaces:
∗ for λ = 1:

(1I − E2)x = 0 ⇔
(

0 −1
0 1

)
x =

(
0
0

)
⇔

(
0 −1
0 0

)
x =

(
0
0

)
⇒ eigenspace :

{(
1
0

)}
⇒ the dimension of the associated eigenspace is 1

∗ for λ = 0:

(0I − E2)x = 0 ⇔
(
−1 −1
0 0

)
x =

(
0
0

)
⇒ eigenspace :

{(
1
−1

)}
⇒ the dimension of the associated eigenspace is 1

• E3 =
(

0 1
0 0

)
– eigenvalues:

det(λI − E3) = det

(
λ −1
0 λ

)
= λ2 != 0

⇒λ1 = λ2 = 0

– algebraic multiplicity of λ = 0: 2
– dimension of the associated eigenspaces:

∗ for λ = 0:

(0I − E3)x = 0 ⇔
(

0 −1
0 0

)
x =

(
0
0

)
⇒ eigenspace :

{(
1
0

)}
⇒ the dimension of the associated eigenspace is 1

What can you learn from these examples about the relation between regularity of a matrix and the dimen-
sion of its eigenspace?

• The total dimension of eigenspaces of a n× n-matrix must not be equal to n.

• The total dimension of the eigenspaces of a n × n-matrix does not depend on the regularity of the
matrix (as E2 and E3 are not regular).

(b) Let

F1 =

 0 0 −2
1 2 1
1 0 3

 , F2 =

 1 0 0
1 2 0
−3 5 2


Verify that F1 and F2 have the same eigenvalues with identical algebraic multiplicities.
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• The characteristic polynomial of F1:

det(λI − F1) = det

 λ 0 2
−1 λ− 2 −1
−1 0 λ− 3

 = λ · (λ− 2) · (λ− 3) + 2(λ− 2)

= λ3 − 5λ2 + 8λ− 4.

• The characteristic polynomial of F2:

det(λI − F2) = det

λ− 1 0 0
−1 λ− 2 0
3 −5 λ− 2

 = (λ− 1) · (λ− 2) · (λ− 2)

= (λ− 1) · (λ2 − 4λ + 4)

= λ3 − 5λ2 + 8λ− 4.

• The characteristic polynomial of F1 and F2 are identical. Thus both matrices have the same eigen-
values with the same algebraic multiplicities.

• The zero crossings of both characteristic polynomials are given by:

λ1 = 1, λ2 = λ3 = 2.

• algebraic multiplicity of λ = 1: 1

algebraic multiplicity of λ = 2: 2.

Determine for F1 and F2 the bases of the eigenspaces.

For the matrix F1:

• for λ = 1: 1 0 2
−1 −1 −1
−1 0 −2

 x =

0
0
0

 ⇔

 1 0 2
−1 −1 −1
0 0 0

 x =

0
0
0

 ⇔ x = α ·

 2
−1
−1

 mit α 6= 0.

associated eigenspace:


 2
−1
−1


• for λ = 2:  2 0 2

−1 0 −1
−1 0 −1

 x =

0
0
0

 ⇔

2 0 2
0 0 0
0 0 0

 x =

0
0
0



associated eigenspace:


 1

0
−1

 ,

0
1
0


For the matrix F2:

• for λ = 1:  0 0 0
−1 −1 0
3 −5 −1

 x =

0
0
0


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associated eigenspace:


−1

1
−8


• for λ = 2:  1 0 0

−1 0 0
3 −5 0

 x =

0
0
0

 ⇒

1 0 0
0 0 0
3 −5 0

 x =

0
0
0



associated eigenspace:


0

0
1


Are they diagonalizable? Give a reasoning.

• The matrix F1 is diagonalizable, because

– for all eigenvalues, the geometric multiplicity is identical to the algebraic multiplicity

– F1 has n linearly independent eigenvectors.

• The matrix F2 is not diagonalizable, because

– for the eigenvalue λ = 2 the algebraic multiplicity is 2 and thus unequal to the geometric
multiplicity, which is 1.

(c) Let

G =

 4 0 1
2 3 2
1 0 4


Compute the eigenvalues of G.

• characteristic polynomial of G:

det(λI −G) = det

λ− 4 0 −1
−2 λ− 3 −2
−1 0 λ− 4


= (λ− 4) · (λ− 3) · (λ− 4)− (λ− 3)

= (λ− 3) ·
(
(λ− 4)2 − 1

)
= (λ− 3) ·

(
λ2 − 8λ + 15

)
= (λ− 3) · (λ− 3) · (λ− 5).

• eigenvalues of G:

⇒ λ1 = λ2 = 3, λ3 = 5

For each eigenvalue λ, compute rank and defect of λI −G.

For λ = 3:
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• rank:

rank(3I − λ) = rank

−1 0 −1
−2 0 −2
−1 0 −1

 = rank

−1 0 −1
0 0 0
0 0 0

 = 1

• defect:

def(3I − λ) = def

−1 0 −1
−2 0 −2
−1 0 −1

 = def

−1 0 0
−2 0 0
−1 0 0

 = 2.

For λ = 5:

• rank:

rank(5I −G) = rank

 1 0 −1
−2 2 −2
−1 0 1

 = rank

 1 0 −1
−1 1 −1
0 0 0

 = rank

1 0 −1
0 1 −2
0 0 0

 = 2.

• defect:

def(5I −G) = def

 1 0 −1
−2 2 −2
−1 0 1

 = def

 1 0 0
−2 2 0
−1 0 0

 = def

 1 0 0
0 1 0
−1 0 0

 = 1.

What can you infer by the result?

One can infer that rank and defect of G − λI can be a hint concerning the algebraic and geometric multi-
plicity of an eigenvalue λ.

Is G diagonalizable? Give a reasoning.

Since the rank of G − λI is one for λ = 3 which has algebraic multiplicity of 2, also the geometric
multiplicity will be 2: As by the constituting equation for the rank of G − 3I , one sees that the defect
def(G− 3I) gives us the number of free parameters in the solution of G− 3I = ~0, i.e. it is the dimension
of the kernel. Therefore G has a full set of eigenvectors and can be diagonalized.
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