Mathematical Foundations of Computer Vision

Example Solutions — Assignment 5

Solution of Exercise No. 1

Is S = {v1,v9,v3} with

1 -2 1
v = 5 , Vg = -1 and vz = 3
4 1 2

a generating system of R®? Give a verbal reasoning of what you compute.

The basis of R? is given by {7, €2, €3}. Can we find A1, A2 and )3 such that
A1v1 + Agv2 + A3vz = €;

for ¢ =1, 2,37 We have a look at

1 -2 1\ /M
5 -1 3| [x] =
4 1 2/ \\
—_———

DL

=A
A solution ) exists if and only if the matrix A is regular. It is then given by

A=A"1.¢.

-1 3 5 3 5 -1
det(A)zdet(l 2)+2-det<4 2>—|—det<4 1)20.

Thus the matrix A is not regular and the given set S is therefore not a generating system of R?.

Here:

Solution of Exercise No. 2

Determine a basis for the space of solutions and its dimension for

207 + x2 + 3z3 = 0
I + 5333 = 0
To + I3 = 0
The system is given by
21 3 1 0 2 1 3 1 0 2 1 3 1 0
1 0 5 z2|=10] « |0 -1 7 ] =(0] « [0 -1 7 ] =|0] &
0 1 1 T3 0 0 1 1 x3 0 0 0 8 x3 0
0
A basis for the space of solutions is 0 and its dimension is by definition 0.
0

Is the following set S = {uy,us,us} a generating system or a basis or nothing from these two, of the R??

w=(1) w= () o w=(2)

The set is a generating system of the R? because

2 (1Y Lo (0
U §u2— 0 gug— e

The set is not a basis of R? because its members are not linearly independent. It holds

2u1 —ug +ug = 0.



Solution of Exercise No. 3

. . 1 1 _ 1
Bx =b with B<_2 _2>,b<_2>

Determine a basis of the kernel of B.

(a) Let

The kernel of B is the space of solutions of the homogeneous system Bx = 0.

(2 b)) = G a)e= () = e (2)

A basis of the kernel of B is given by { (_11> }

Determine a particular solution xo of Bx = b.

peeve (4 L) ()=(5) = 6 )G

A particular solution xg of Bx = b is given by zg = (?) .

() = () =)

Give a geometrical interpretation of kernel, xy and .

The geometrical interpretations are in the setting abovebecome obvious when plotting kernel, x¢ and z in
the domain of « — y-coordinates:

e The kernel is a mapping that always includes the zero point, i.e. the origin. In our case it is a linear
function with slope —1 in the x — y-domain.

e The particular solution xg is a point which is a member of the set of all possible solutions of the
underlying system.

e The set of solutions x is given by translating the kernel in such a way that the particular solution is
included. In our case we obtain a linear function that runs through the point x.

(b) Now, let
1 2 -1 2
cC=135 0 4
1 1 2 0
Compute bases for row space and kernel of C.
We compute the kernel of C':
1 2 -1 2 1 2 -1 2
Cr=0« |3 5 0 4|z=0« (0 1 -3 2|z=0
11 2 0 00 0 O

Set x4 = «, 3 = 3. Then

To = 3x3 — 214 = 303 — 2«
1 = —2x9 + 13 — 224 = —50 + 201



Thus a basis of the kernel of C'is

2 -5
—2 3
0’| 1
1 0
We compute a basis of the row space of C":
1 2 -1 2 1 2 -1 2
35 0 4|—[0 1 -3 2
11 2 0 00 0 O
1 0
A basis of the row space of C' is K _13
2 2

(c) Verify at hand of C': The kernel and the row space of a matrix are orthogonal complements.

We check if

2a — 50 y

—2a+ 30 1 2749
B -y =30
e 2y +26

holds for all «, 5 € R. Indeed the kernel and row space of C' are orthogonal, because
2a—=508)-(7)+(—2a+38)- 2y +0) +5-(——30) +a-(2y+20) =0
is fulfilled.
(d) Prove rank(A) = rank(AT).
Let k := max(m, n) where the latter define the size of a given matrix A. Then it is clear by definition that
dimc A +dimg A =k
where the lower indices denote the column space and the kernel, respectively.
By part (b) of this exercise, we can also infer that
dimg A +dimg A =k
where the lower index R denotes the row space. Since
dimp A = dimc AT

the assertion follows.

Solution of Exercise No. 4

Determine rank and defect, plus verify the Dimension Theorem for

2 0 -1
D=1 4 0 -2
0 0 O

We consider the issues of importance:



e rank of D:

2 0 -1 2 0 -1
rank(D)=rank [4 0 —-2| =7rank |0 0 0 | =1
0 0 O 0 0 O
e defect of D:
2 0 -1 0 2 0 -1 0
Dr=0«< |4 0 -2]z=(0]< [0 O O |Jz=1{0
0 0 O 0 0 0 O 0
0 1
Sr=a|l]|+8|0]| witha,B €R
0 2
Thus the defect of D is 2.

e The dimension theorem is fulfilled:
rank(A) +def(A)=n & 1+2=3.
Solution of Exercise No. 5

(a) Determine for the following matrices the eigenvalues, their algebraic multiplicities, and the dimension
of the associated eigenspaces:

El—IER 5 EQ—(O O>; E3—<0 0)

L] E1:I€Rn><n

— Eigenvalues: Compute zeroes of the characteristic polynomial

det(\ — E1) = det(M — I) =det(A— 1)I) = (A= 1)"det(I) = (A—1)" 20
— algebraic multiplicity of A = 1: n

— dimension of the associated eigenspaces:
x for A = 1:

M —E)z=0 & 0z=0
= eigenspace : {€1,...,€n}

= the dimension of the associated eigenspace is n
= algebraic and geometric multiplicity is the same

11
'E2_<0 0>

— eigenvalues:

det()\I—Eg):det<>\al _1) —(A=1)-A=0

=N =11 =0.



— algebraic multiplicity of A = 1: 1
algebraic multiplicity of A = 0: 1

— dimension of the associated eigenspaces:

x for A = 1:
(LI - Bz =0 & (8 _11>:c— <8> & (8 _01)‘”_ (8)
= eigenspace : { <(1)) }

= the dimension of the associated eigenspace is 1

x for A = 0:
-1 -1 0
(OIEQ)x()(:)(O 0>x(0>

= eigenspace : { (_11> }
= the dimension of the associated eigenspace is 1

01
'E3:<o 0)

— eigenvalues:

A -1 !
det(\ — Es) = det (0 A) =A2Z90
=\ =X =0

— algebraic multiplicity of A = 0: 2
— dimension of the associated eigenspaces:

* for A = 0:
0 -1 0
(0[E;;)a:0@<0 0>:z:<0)

= eigenspace : { <(1)> }

= the dimension of the associated eigenspace is 1
What can you learn from these examples about the relation between regularity of a matrix and the dimen-
sion of its eigenspace?

e The total dimension of eigenspaces of a n X n-matrix must not be equal to n.

e The total dimension of the eigenspaces of a n X n-matrix does not depend on the regularity of the
matrix (as Fs and Es3 are not regular).

(b) Let

=

— = O
ot O
N OO

Verify that Fy and Fs have the same eigenvalues with identical algebraic multiplicities.



e The characteristic polynomial of F:

A0 2
detAI —F)=det [ -1 A—=2 -1 | =Xx-(A=2)-(A—3)+2(A—2)
~1 0 A-3

=\ =5\ +8)A—4.
e The characteristic polynomial of F:

A—1 0 0
detON —Fy)=det | —1 A—=2 0 |=(0A-1)-(A=2)-(A—2)
3 -5 A-2

=A=1)- (A2 —4r+4)
=A% —5A* 48X — 4.
e The characteristic polynomial of F; and F; are identical. Thus both matrices have the same eigen-
values with the same algebraic multiplicities.

e The zero crossings of both characteristic polynomials are given by:

M=12 =)\ =2.

e algebraic multiplicity of A = 1: 1

algebraic multiplicity of A = 2: 2.

Determine for Fy and Fs the bases of the eigenspaces.

For the matrix Fy:

e for A\ =1:
1 0o 2 0 1 0 2 0 2
-1 -1 -1]z=[(0] < |-1 -1 —-1]|z=|0] © z=a-|—-1| mitas#0.
-1 0 =2 0 0 0 O 0 -1
2
associated eigenspace: -1
-1
o for A = 2:
2 0 2 0 2 0 2 0
-1 0 -1|z=|0|] & [0 O OfJz=|{0
-1 0 -1 0 0 0 0 0
1 0
associated eigenspace: 01,1
-1 0
For the matrix Fy:
o for A\ =1:
0O 0 O 0
-1 -1 0 |Jx=1{0
3 -5 -1 0



associated eigenspace: 1
-8
e for A\ =2:
1 0 0 0 1 0 O 0
-1 0 O0Jz=|0] = (0 0 O]z=1{0
3 5 0 0 3 5 0 0
0
associated eigenspace: 0
1

Are they diagonalizable? Give a reasoning.

e The matrix F} is diagonalizable, because

— for all eigenvalues, the geometric multiplicity is identical to the algebraic multiplicity

— Fi has n linearly independent eigenvectors.

e The matrix F5 is not diagonalizable, because

— for the eigenvalue A = 2 the algebraic multiplicity is 2 and thus unequal to the geometric
multiplicity, which is 1.

(c) Let
4 0 1
G=| 2 3 2
1 0 4
Compute the eigenvalues of G.
e characteristic polynomial of G:
A—4 0 -1

det M\l — G) =det | =2 X—-3 =2
-1 0 A—4

e cigenvalues of G:

$>\1:>\2:3,>\3:5

For each eigenvalue )\, compute rank and defect of \I — G.
For A = 3:



e rank:

-1 0 -1 -1 0 -1
rank(3l —X)=rank [ -2 0 —-2| =rank|{ 0 0 0 | =1
-1 0 -1 0 0 O
o defect:
-1 0 -1 -1 0 0
def(31 — N =def [ -2 0 —2| =def[-2 0 0] =2
-1 0 -1 -1 0 O
For A = 5:
e rank:
1 0 -1 1 0 -1 1 0 -1
rank(5] —G)=rank [ -2 2 —-2| =rank|-1 1 —-1]=rank|0 1 —-2] =2
-1 0 1 0 0 0 0 0 O
o defect:
1 0 -1 1 0 0 1 0 0
def(5] —G)=def | -2 2 —2| =def|-2 2 0] =def[ 0 1 0]=1
-1 0 1 -1 0 0 -1 0 0

What can you infer by the result?

One can infer that rank and defect of G — AI can be a hint concerning the algebraic and geometric multi-
plicity of an eigenvalue A.

Is G diagonalizable? Give a reasoning.

Since the rank of G — AI is one for A = 3 which has algebraic multiplicity of 2, also the geometric
multiplicity will be 2: As by the constituting equation for the rank of G — 31, one sees that the defect
def(G — 3I) gives us the number of free parameters in the solution of G — 31 = 0, i.e. it is the dimension
of the kernel. Therefore G has a full set of eigenvectors and can be diagonalized.



