
Mathematical Foundations of Computer Vision

Example Solutions – Assignment 4

Solution of Exercise No. 1
(a) Let y = Ax with y ∈ IRm, x ∈ IRn, and where A = (aij), A ∈ IRm×n, does not depend on x. Prove or

disprove: ∂y
∂x = A

We compute y = Ax. For i = 1, . . . , n we obtain:

yi =
n∑

j=1

aij · xj .

Differentiating yields

∂yi

∂xk
= aik for k = 1, . . . ,m.

Thus

∂y

∂x
=


∂y1
∂x1

. . . ∂y1
∂xn

...
. . .

...
∂ym

∂x1
. . . ∂ym

xn

 =

a11 . . . a1n

...
. . .

...
am1 . . . amn

 = A.

(b) Let f = x>Ax be given where f ∈ IR, x ∈ IRn, A = (aij), A ∈ IRn×n.

Compute ∂f
∂x for (i) A not symmetric, and for (ii) A symmetric.

We reformulate f :

f = xT Ax = xT ·


n∑

j=1

a1jxj

...
n∑

j=1

anjxj

 =
n∑

k=1

xk ·
n∑

j=1

akjxj

 .

Then for i = 1, . . . , n:

∂f

∂xi
=

∂

∂xi

 n∑
k=1

xk ·
n∑

j=1

akjxj

 =
n∑

j=1

aijxj +
n∑

j=1

ajixj = (Ax)i + (AT x)i = (A + AT )ix

Thus:

(i) In general: ∂f
∂x = (A + AT )x.

(ii) If A is symmetric, we obtain ∂f
∂x = 2Ax.

(c) Let f(z) = y>(z)x(z) where z ∈ IRn, x(z) ∈ IRn, y(z) ∈ IRn.

Compute ∂f
∂z .

∂f

∂z
=

∂

∂z
(y>(z)x(z)) =

(
∂

∂z
y>(z)

)
x(z) + y>(z)

(
∂

∂z
x(z)

)
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(d) Let ϕ(x) = ‖x− v‖2, where x, v ∈ Rn. Compute ∂ϕ
∂x .

We have

ϕ(x) = ‖x− v‖2 =

 n∑
j=1

(xj − vj)2

 1
2

.

Then

∂ϕ

∂xi
=

1
2
·

 n∑
j=1

(xj − vj)

− 1
2

· ∂

∂xi

 n∑
j=1

(xj − vj)2

 =
1
2
· 1
‖x− v‖2

· 2(xi − vi) =
xi − vi

‖x− v‖2

⇒ ∂ϕ

∂x
=

(x− v)>

‖x− v‖2
since ϕ is a mapping from IRntoIR, so that the Jacobian must be in IR1×n.

Solution of Exercise No. 2
(a) Let B,C ∈ IRn×n with B = (bij), bij = bij(t) and C = (cij), cij = cij(t). Let BC = I . Compute the
equation resulting out of

d

dt
[BC] =

d

dt
[I].

We compute (
d

dt
[BC]

)
ij

=
d

dt

(
n∑

k=1

bik(t)ckj(t)

)

=
n∑

k=1

d

dt
(bik(t)ckj(t))

=
n∑

k=1

(
d

dt
bik(t)

)
· ckj(t) + bik(t) ·

(
d

dt
ckj(t)

)
=
(

d

dt
[B] · C

)
ij

+
(

B · d

dt
[C]
)

ij

=
(

d

dt
[B] · C + B · d

dt
[C]
)

ij

.

Thus
d

dt
[BC] =

d

dt
[I] ⇔ d

dt
[B] · C + B · d

dt
[C] = 0

⇔ Ḃ(t) · C(t) + B(t) · Ċ(t) = 0.

(b) Let A = (aij) ∈ IRm×n be invertible, with aij = aij(t). Compute d
dt

[
A−1

]
.

We have

0 =
d

dt
(I) =

d

dt

[
A−1(t)A(t)

]
=

d

dt

[
A−1(t)

]
·A(t) + A−1(t) · d

dt
[A(t)] .

Thus
d

dt

[
A−1(t)

]
·A(t) = −A−1(t) · d

dt
[A(t)]

⇒ d

dt

[
A−1(t)

]
= −A−1(t) · Ȧ(t) ·A−1(t).
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Solution of Exercise No. 3
(a) Prove that the following implication holds:
If A can be made similar to a diagonal matrix Λ, then A is symmetric.

If A can be made similar to a diagonal matrix Λ, then an orthogonal matrix Q exists such that A = QΛQT .
We show that the matrix A is indeed symmetric:

AT = (QΛQT )T = (QT )T ΛT QT = QΛT QT = QΛQT = A,

as a diagonal matrix is always symmetric.

(b) Prove that the following assertion holds: For a symmetric matrix A, the eigenvalues are real.

Let λ be an eigenvalue of the matrix A corresponding to the eigenvector x. We want to show that λ is real,
hence we have to show that λ = λ is fulfilled. Multiplying Ax = λx with xT yields

Ax = λx ⇒ xT Ax = xT λx ⇒ xT Ax = λxT x.

Further, computing the complex conjugate of Ax = λx results in

Ax = λx ⇒ Ax = Ax = λx = λx ⇒ Ax = λx,

since A ∈ Rn×n. Take the transpose

⇒ (Ax)T = (λx)T ⇒ xT AT = xT λ
T︸︷︷︸

∈C1×1

= λxT ⇒ xT A = λxT

as A = AT . Multiplication with x yields

⇒ xT Ax = λxT x.

Comparison with equation (1) results in

λxT x = λxT x.

As xT x ∈ R and x 6= 0, we obtain λ = λ and all eigenvalues are real.

(c) Prove that the following assertion holds: For a symmetric matrix A, the eigenvectors to different eigen-
values are orthogonal.

Let λ1 be an eigenvalue of the matrix A with corresponding eigenvector x1, and similiarly let λ2 be an
eigenvalue of A with corresponding eigenvector x2. Both eigenvalues should be different, thus let λ1 6= λ2.
Then

Ax1 = λ1x1 (1)
Ax2 = λ2x2 (2)

is fulfilled. We have to show that x1 ⊥ x2 holds. Therefore we multiply the first equation with xT
2 and the

second equation with xT
1 :

xT
2 (Ax1) = xT

2 (λ1x1)

xT
1 (Ax2) = xT

1 (λ2x2).

We subtract the second equation from the first equation:

xT
2 (Ax1)− xT

1 (Ax2) = xT
2 (λ1x1)− xT

1 (λ2x2).
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First we simplify the left-hand-side and make use of the symmetry of A:

xT
2 (Ax1)︸ ︷︷ ︸
∈R

−xT
1 (Ax2) = (xT

2 (Ax1))T − xT
1 Ax2

= (Ax1)T ((x2)T )T − xT
1 Ax2

= xT
1 AT x2 − xT

1 Ax2

= xT
1 Ax2 − xT

1 Ax2

= 0.

Afterwards we simplify the right-hand-side:

xT
2 (λ1x1)− xT

1 (λ2x2) = λ1 (xT
2 x1)︸ ︷︷ ︸
∈R

−λ2(xT
1 x2)

= λ1(xT
2 x1)T − λ2(xT

1 x2)

= λ1(xT
1 x2)− λ2(xT

1 x2)
= (λ1 − λ2) · 〈x1, x2∠.

Since λ1 6= λ2 as we assumed, it must hold 〈x1, x2∠ = 0, i.e. the vectors x1 and x2 are orthogonal.
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