
Mathematical Foundations of Computer Vision

Example Solutions – Assignment 3

Solution of Exercise No. 1
(a) For R = (rij) ∈ SO(3), prove by using Cramer’s rule that

r11 = r22r33 − r23r32

r22 = r11r33 − r13r31

r33 = r11r22 − r21r12

Using Cramer’s rule one obtains

R−1 =
1

det(R)
·


+det

(
r22 r23

r32 r33

)
−det

(
r12 r13

r32 r33

)
+det

(
r12 r13

r22 r23

)
−det

(
r21 r23

r31 r33

)
+det

(
r11 r13

r31 r33

)
−det

(
r11 r13

r21 r23

)
+det

(
r21 r22

r31 r32

)
−det

(
r11 r12

r31 r32

)
+det

(
r11 r12

r21 r22

)


Since R ∈ SO(3), we obtain det(R) = +1 and R−1 = RT holds. Therefore

RT =

r11 r21 r31

r12 r22 r32

r13 r23 r33

 =


r22r33 − r23r32 −det

(
r12 r13

r32 r33

)
det

(
r12 r13

r22 r23

)
−det

(
r21 r23

r31 r33

)
r11r33 − r13r31 −det

(
r11 r13

r21 r23

)
det

(
r21 r22

r31 r32

)
−det

(
r11 r12

r31 r32

)
r11r22 − r12r21


Thus r11 = r22r33 − r23r32, r22 = r11r33 − r13r31 and r33 = r11r22 − r12r21 is fulfilled.

(b) Prove that

1. similar matrices A and B have the same characteristic polynomials.

2. the geometric multiplicity of the eigenvalues of A and B is the same.

We first show that det(λI −A) = det(λI −B) holds for similar matrices A and B = U−1AU .

det(λI −B) = det(λI − U−1AU)

= det(λI · U−1U − U−1AU)

= det(U−1(λI)U − U−1AU)

= det(U−1(λI −A)U)

= det(U−1) · det(λI −A) · det(U)

= det(U−1) · det(U) · det(λI −A)

= det(U−1U) · det(λI −A)
= det(I) · det(λI −A)
= det(λI −A).

Thus they have the same characteristic polynomials.
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It is evident that the algebraic multiplicity is equal. We now show that also the geometric multiplicity is the
same. To this end, we have to show that the dimensions of eigenspaces is the same.

We first show that if x is an eigenvector of B, then Ux is an eigenvector of A corresponding to the eigen-
value λ.

x is an eigenvector ofB ⇒ Bx = λx

⇒ (U−1AU)x = λx

⇒ U−1AUx = λx

⇒ AUx = Uλx

⇒ A(Ux) = λ(Ux).

U is a regular matrix. From B = U−1AU we obtain A = UBU−1. In the next step we show that if x is an
eigenvector of A, then U−1x is an eigenvector of B corresponding to the same eigenvalue.

x is an eigenvector ofA ⇒ Ax = λx

⇒ UBU−1x = λx

⇒ BU−1x = U−1λx

⇒ B(U−1x) = λ(U−1x).

The geometric multiplicity is the dimension of the associated eigenspace. Since U maps the eigenspace of
B to the eigenspace of A and U−1 maps the eigenspace of A to the eigenspace of B, the dimensions of the
eigenspaces have to be equal.

(c) Given is the matrix

A :=
1
9

 0 −1 −2
−1 0 −2
−2 −2 −3

 (1)

Compute all eigenvalues of A.

First we compute the characteristic polynomial of A:

det(λI −A) = det

1
9

9λ 1 2
1 9λ 2
2 2 9λ + 3


=

1
729

[
9λ · det

(
9λ 2
2 9λ + 3

)
− det

(
1 2
2 9λ + 3

)
+ 2 · det

(
1 2
9λ 2

)]
=

1
729

[9λ · (9λ · (9λ + 3)− 4)− (9λ + 3− 4) + 2 · (2− 18λ)]

=
1

729
[
9λ · (81λ2 + 27λ− 4)− 9λ + 1 + 4− 36λ

]
=

1
729

[
729λ3 + 243λ2 − 36λ− 9λ + 5− 36λ

]
=

1
729

[
729λ3 + 243λ2 − 81λ + 5

]
.

Its zero crossings are

det(λI −A) = 0

⇔ 729λ3 + 243λ2 − 81λ + 5 = 0

⇔ λ1,2 =
1
9
, λ3 = −5

9
.
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Determine a basis for the resulting eigenspaces.

We compute the solution of (λI −A)x = 0 for λ = 1
9 and λ = − 5

9 .
With λ = − 5

9 : − 5
9

1
9

2
9

1
9 − 5

9
2
9

2
9

2
9 − 5

9 + 3
9

x =
1
9

−5 1 2
1 −5 2
2 2 −2

x =

0
0
0


⇔

−5 1 2
0 −2 1
0 0 0

x =

0
0
0

 .

Let x3 := γ. Then x2 = 1
2γ and x1 = 1

2γ. Thus for all γ 6= 0 the vector x = γ ·

 1
2
1
2
1

 is an eigenvector.

We will be interested in a normalized version of the latter vector: v1 = 1√
6

1
1
2

.

With λ = 1
9 :  1

9
1
9

2
9

1
9

1
9

2
9

2
9

2
9

1
9 + 3

9

x =
1
9

1 1 2
1 1 2
2 2 4

x =

0
0
0


⇔

1 1 2
0 0 0
0 0 0

x =

0
0
0

 .

Let x1 := α and x2 := β. Then

x1 + x2 + 2x3 = 0 ⇔ α + β = −2x3

⇔ x3 = −1
2
α− 1

2
β.

If x 6= 0, then x = α ·

 1
0
− 1

2

+ β ·

 0
1
− 1

2

 is an eigenvector.

Finally 
 1

2
1
2
1

 ,

 1
0
− 1

2

 ,

 0
1
− 1

2


is a basis for the resulting eigenspaces.

For later use, we note that the choice α = β = −1 and the multiplication with a normalization factor gives

the particular eigenvector v2 = 1√
3

−1
−1
1

. It holds 〈v1, v2 = 0.

By v1× v2 =: v3 = 1√
18

 3
−3
0

 we obtain another orthonormal eigenvector, equivalent to α = 3, β = −3

and multiplication with a normalization weight.

Determine an orthogonal matrix U such that Λ = U>AU is of diagonal form.
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The sought matrix U can obviously be made from the columns of the orthonormal eigenvectors above, i.e.
U = [v1, v2, v3].

Which transformation steps are described by the factors in the mapping u 7→ UΛU>?

We consider a vector x, given in the natural basis, and analyse what happens when calculating Ax =
UΛUT x.

The multiplication with UT = U−1 transforms it into a new basis consisting of orthonormal eigenvectors
of A. Applying the diagonal matrix has no effect on the basis, it describes a simple transformation in that
new basis. And finally multiplying with U transforms the resulting vector back into the natural basis.

Exercise No. 2 – Treasure of the Indian Ocean
(a) Show the derivation of

(a) cos φ =
1
2

(trace(R)− 1)

Using tr(A + B) = tr(A) + tr(B) and tr(αA) = αtr(A), we obtain:

tr(R) = tr
(
I cos ϕ + v̂ sinϕ + vvT (1− cos ϕ)

)
= tr(I cos ϕ) + tr(v̂ sinϕ) + tr(vvT (1− cos ϕ))

= cos(ϕ) · tr(I) + sin(ϕ) · tr(v̂) + (1− cos ϕ) · tr(vvT ).

Since v̂ is a specific skew symmetric matrix with zero entries on the diagonal, it holds tr(v̂) = 0.
With ‖v‖ = 1, we obtain

tr(vvT ) = tr

 v2
1 v1v2 v1v3

v1v2 v2
2 v2v3

v1v3 v2v3 v2
3


= v2

1 + v2
2 + v2

3

= ‖v‖2
2

= 1.

Finally

tr(R) = cos(ϕ) · tr(I) + sin(ϕ) · tr(v̂) + (1− cos(ϕ)) · tr(vvT )
= cos(ϕ) · 3 + 1− cos(ϕ)
= 2 cos(ϕ) + 1.

This is equivalent to tr(R)− 1 = 2 cos(ϕ). Multiplying with 1
2 finishes the proof.

(b) Show the derivation of

(b) v̂ =
1

2 sinφ

(
R−R>)

We compute the transpose of R:

RT =
(
I cos ϕ + v̂ sinϕ + vvT (1− cos ϕ)

)T
= cos(ϕ) · IT + sin(ϕ) · v̂T + (1− cos(ϕ))(vvT )T

= cos(ϕ) · I + sin(ϕ)v̂T + (1− cos(ϕ))(vvT )
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Then

1
2 sin(ϕ)

(R−RT ) =
1

2 sin(ϕ)
(v̂ sin(ϕ)− v̂T sin(ϕ))

=
1
2
(v̂ − v̂T ).

We have to show that

v̂ =
1
2
(v̂ − v̂T ) ⇔ 1

2
v̂ = −1

2
v̂T ⇔ v̂ = −v̂T .

holds. As

v̂ =

 0 −v3 v2

v3 0 −v1

−v2 v1 0


holds, this property is obviously fulfilled.

Exercise No. 3 – Twist it
(a) Show that D is in SO(3).

We check if DT D = DDT = I holds.

DT D =
1
9

 8 4 −1
1 −4 −8
−4 7 −4

 · 1
9

 8 1 −4
4 −4 7
−1 −8 −4


=

1
81

8 · 8 + 4 · 4 + (−1) · (−1) 8 · 1− 4 · 4 + 1 · 8 −8 · 4 + 4 · 7 + 1 · 4
1 · 8− 4 · 4 + 8 · 1 1 · 1 + 4 · 4 + 8 · 8 −1 · 4− 4 · 7 + 4 · 8
−4 · 8 + 7 · 4 + 4 · 1 −4 · 1− 7 · 4 + 4 · 8 4 · 4 + 7 · 7 + 4 · 4


=

1
81

81 0 0
0 81 0
0 0 81


=

1 0 0
0 1 0
0 0 1


and equivalently one obtains

DDT =
1
9

 8 1 −4
4 −4 7
−1 −8 −4

 · 1
9

 8 4 −1
1 −4 −8
−4 7 −4

 =

1 0 0
0 1 0
0 0 1

 .

Further

det(D) =
(

1
9

)3

·
[
8 · det

(
−4 7
−8 −4

)
− 4 · det

(
1 −4
−8 −4

)
+ (−1) · det

(
1 −4
−4 7

)]
=

1
729

· [8 · (16 + 56)− 4 · (−4− 32)− (7− 16)]

=
1

729
· [8 · 72 + 4 · 36 + 9]

=
1

729
· [576 + 144 + 9]

=
1

729
· 729

= 1.
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Thus D ∈ SO(3).

(b) Compute the rotation axis and normalise the result.

Using the formula in Exercise 2 and what we will compute in part (c) we obtain

v̂ =
1

2 sin(ϕ)
(R−RT ) =

1
2 sin( 2

3π)

0 − 1
3 − 1

3
1
3 0 5

3
1
3 − 5

3 0

 =
1√
3

0 − 1
3 − 1

3
1
3 0 5

3
1
3 − 5

3 0

 .

With

v1 = v̂32, v2 = v̂13, v3 = v̂21

the rotation axis is given by

v =

v1

v2

v3

 =

−
1√
3

5
3

− 1√
3

1
3

1√
3

1
3

 =
√

3
9

−5
−1
1

 .

This vector is already normalized as(√
3

9

)2

· ((−5)2 + (−1)2 + (1)2) =
3
81

· 27 = 1.

(c) Compute the angle of rotation.

We make use of the formula given in Exercise 2. Then

cos(ϕ) =
1
2
(tr(D)− 1) ⇔ cos(ϕ) =

1
2
(0− 1) ⇔ cos(ϕ) = −1

2
.

With ϕ ∈ [0◦, 180◦] this yields

ϕ =
2
3
π = 120◦.

Exercise No. 4 – Choreography of the Twist
(a) Compute an orthonormal basis {w1, w2, w3} of the IR3 with w1||v.

Let w1 := 1√
3

 1
1
−1

. We choose

v2 =
(
1 −1 0

)T
.

Then

w′
2 = v2 − 〈v2, w1〉︸ ︷︷ ︸

=0

·w1 = v2 ⇒ w2 =
1√
2

 1
−1
0

 .

We choose

v3 =
(
1 1 2

)T
.
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Then

w′
3 = v3 − 〈v3, w1〉︸ ︷︷ ︸

=0

·w1 − 〈v3, w2〉︸ ︷︷ ︸
=0

·w2 = v3 ⇒ w3 =
1√
6

1
1
2

 .

The vectors w1, w2 and w3 describe an orthonormal basis.

(b) Determine the matrix realising the rotation w.r.t. the basis {w1, w2, w3}.

As the matrix shall describe a rotation of angle φ = π/2 about the axis v = w1, the desired rotation can be
written as

A =

1 0 0
0 cos π/2 − sinπ/2
0 sinπ/2 cos π/2

 =

1 0 0
0 0 −1
0 1 0



(c) Compute the orthogonal matrix S for the basis transform {e1, e2, e3} → {w1, w2, w3}.

Let W := [w1, w2, w3]. Then with I := [e1, e2, e3], the matrix S of the basis transform reads I = WS,
i.e. S−1 = W = S> because of the orthogonality of S. This means

S =


1√
3

1√
3

−1√
3

1√
2

0 1√
2

1√
6

−2√
6

−1√
6



(d) Determine the matrix C describing the rotation in the canonical basis.

One can directly infer that C = S>AS, where A performs the actual rotation in the basis W . Plugging in
the matrices from the previous parts yields

C =
1
3

 1 1 +
√

3 −1 +
√

3
1−

√
3 1 −1−

√
3

−1−
√

3 −1 +
√

3 1


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