
Mathematical Foundations of Computer Vision

Example Solution – Assignment 2

Solution of Exercise No. 1
(a) Transform the vector a1 := (3, 3)> given in the basis B1 to new coordinates b1 w.r.t. B2.

Let us first write down the matrices we might use:

B1 :=

(
1 0
0 1

)
= B−11

B2 :=

(
2 −1
1 1

)
=⇒ B−12 =

(
1
3

1
3−1

3
2
3

)
We compute b1 = Aa1, with A = B−12 B1

A = B−12 B1 =

(
1
3

1
3−1

3
2
3

)(
1 0
0 1

)
=

(
1
3

1
3−1

3
2
3

)
Therefore, we compute:

b1 = Aa1 =

(
1
3

1
3−1

3
2
3

)(
3
3

)
=

(
2
1

)

(b) Transform the vector b2 := (2,−1)> given in the basis B2 to new coordinates a2 w.r.t. B1.

We compute a2 = Ab2, with A = B−11 B2

A = B−11 B2 =

(
1 0
0 1

)(
2 −1
1 1

)
=

(
2 −1
1 1

)
Therefore, we obtain:

b1 = Aa1 =

(
2 −1
1 1

)(
2
−1

)
=

(
5
1

)

(c) Compute ‖a1 − a2‖2.

||a1 − a2||2 =

∣∣∣∣∣∣∣∣(33
)
−
(
5
1

)∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣(−22
)∣∣∣∣∣∣∣∣

2

=
√
(−2)2 + 22 =

√
8 = 2

√
2

(d) Compute ‖b1− b2‖A−>A−1 making use of the metric induced by the canonical inner product expressed
in the basis B2. Comment on your result: Did you expect it?

From the first exercise, we already know:

A =

(
1
3

1
3−1

3
2
3

)
=⇒ A−1 =

(
2 −1
1 1

)
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Now, we compute in a straight forward way:

||b1 − b2||A−>A−1 =

∣∣∣∣∣∣∣∣(21
)
−
(

2
−1

)∣∣∣∣∣∣∣∣
A−>A−1

=

∣∣∣∣∣∣∣∣(02
)∣∣∣∣∣∣∣∣

A−>A−1

=

√
<

(
0
2

)
,

(
0
2

)
>A−>A−1

=

√(
0
2

)>( 1
3

1
3−1

3
2
3

)−>( 1
3

1
3−1

3
2
3

)−1(
0
2

)

=

√(
0
2

)>(
2 1
−1 1

)(
2 −1
1 1

)(
0
2

)

=

√(
0
2

)>(
2 1
−1 1

)(
−2
2

)

=

√(
0
2

)>(−2
4

)
=
√
8

= 2
√
2

We expected this result, as a coordinate transform of two points does not change their distance measured
at hand of the canonical inner product (equivalent to the Euclidean norm).

Solution of Exercise No. 2
(a) Prove that the length of the vector (x, y, z)> (in Cartesian coordinates) is given by√

x2 + y2 + z2 (1)

by making use of the Theorem of Pythagoras.

First, we compute the length of the diagonal d in the x-y-plane (i.e. the length of the projection of the
vector onto this plane).

Using the Theorem of Pythagoras, we get:

d2 = x2 + y2 i.e. d =
√
x2 + y2

Then we compute the diagonal of the quader, taking into account also the third coordinate direction.
This is identical to the length of the vector a = (x, y, z)>.

Using the Theorem of Pythagoras, we get:

||a||22 = d2 + z2 = x2 + y2 + z2 =
√
x2 + y2 + z2

So the length of the vector is given by
√
x2 + y2 + z2.

(b) Show that for any positive definite, symmetric matrix S ∈ IR3×3, the mapping

〈·, ·〉S : IR3 × IR3 → IR with 〈u, v〉S = u>Sv (2)

is a valid inner product on IR3.

We need to elaborate on three issues:
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• Linearity:

〈u, αv + βw〉S = u>S (αv + βw)

= αu>Sv + βu>Sw

= α〈u, v〉S + β〈u,w〉S

• Symmetry:

〈u, v〉S = u>Sv︸ ︷︷ ︸
∈R

=
(
u>Sv

)>︸ ︷︷ ︸
∈R

= v>S>u
S symmetric

= v>Su = 〈v, u〉S

• Non-negativity:
〈v, v〉S > 0

automatically holds for non-zero vectors v because S is assumed to be positive definite. Equality to
zero can only hold if v is identical to the vector ~0 by the same reason.

In the total of these properties, 〈·, ·〉S is a valid inner product for S symmetric and positive definite.

Solution of Exercise No. 3
(a) Compute the angle between v1 and v2 as well as the length of the projection of v1 onto v2.

We know that the relation < v1, v2 >= ||v1|| · ||v2|| · cos(^(v1, v2)) holds.

So we have to compute cos(^(v1, v2)) =
< v1, v2 >

||v1|| · ||v2||
:

cos(^(v1, v2)) =
< v1, v2 >

||v1|| · ||v2||
=

<

3
0
4

 ,

−12
−2

 >∣∣∣∣∣∣
∣∣∣∣∣∣
3
0
4

∣∣∣∣∣∣
∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∣∣∣∣∣∣
−12
−2

∣∣∣∣∣∣
∣∣∣∣∣∣

=
−3− 8√
25 ·
√
9

=
−11
5 · 3

=
−11
15

=⇒ α = ^(v1, v2) = cos−1
(
−11
15

)
≈ 137, 17

For the projection, we have to compute:

p =< v1,
v2
||v2||

> · v2
||v2||

= <

3
0
4

 ,

−12
−2


∣∣∣∣∣∣
∣∣∣∣∣∣
−12
−2

∣∣∣∣∣∣
∣∣∣∣∣∣
> ·

−12
−2


∣∣∣∣∣∣
∣∣∣∣∣∣
−12
−2

∣∣∣∣∣∣
∣∣∣∣∣∣

=<

3
0
4

 ,
1

3

−12
−2

 > ·1
3

−12
−2

 =
1

9
· <

3
0
4

 ,

−12
−2

 > ·

−12
−2


=

1

9
· (−3− 8) ·

−12
−2

 =
−11
9
·

−12
−2


The length of the projection is then given by ‖p‖:

‖p‖ =
11

9

√
(−1)2 + 22 + (−2)2 =

11

3
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(b) Compute a vector n orthogonal to v1 and v2 with ‖n‖2 = 1.

We compute:

n′ = v1 × v2 =

3
0
4

×
−12
−2

 =

−82
6


Now, we have to normalize the vector:

n =
n′

||n′||
=

−82
6


∣∣∣∣∣∣
∣∣∣∣∣∣
−82

6

∣∣∣∣∣∣
∣∣∣∣∣∣

=
1√

64 + 4 + 36
·

−82
6

 =
1√
104
·

−82
6

 =
1√
26
·

−41
3



(c) Compute the area A of the parallelogram spanned by v1 and v2.

To compute the area A of the parallelogram spanned by v1 and v2, we have to compute:

A = ‖v1 × v2‖ = ‖n′‖ =

∣∣∣∣∣∣
∣∣∣∣∣∣
−82

6

∣∣∣∣∣∣
∣∣∣∣∣∣ =

√
64 + 4 + 36 = 2

√
26

Solution of Exercise No. 4
Now, let a point light source be given at the point P := (1, 1, 1)>. Let the light shine onto a triangle patch
determined by the vertices

A :=

 1
4/3
1/3

 , B :=

 1
3/2
1

 and C :=

 5/2
1/2
0

 (3)

Compute the area of the shadow of the triangle patch given by (A,B,C) on the plane 4x+6y−3z = 19.

We write the plane onto which the shadow is cast as

e :

 4
6
−3

 x− 19 = 0

For A = (1, 43 ,
1
3 )
>, we compute the shadowpoint L1. First, we compute the line through A and P =

(1, 1, 1)> as

gAP : x = P + λ1(A− P ) =

1
1
1

+ λ1

 0
1
3−2
3


Then we compute the intersection of e and gAP : 4

6
−3

1
1
1

+ λ1

 0
1
3−2
3

− 19 = 0

⇔ 7 + 4λ1 − 19 = 0

⇔ λ1 = 3
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For the shadowpoint L1, we thus get: L1 = (1, 2,−1)>.

For B = (1, 32 , 1)
>, we compute the shadowpoint L2. First, we compute the line through B and P :

gBP : x = P + λ2(B − P ) =

1
1
1

+ λ2

0
1
2
0


Then we compute the intersection of e and gBP : 4

6
−3

1
1
1

+ λ2

0
1
2
0

− 19 = 0

⇔ 7 + 3λ2 − 19 = 0

⇔ λ2 = 4

For the shadowpoint L2, we get L2 = (1, 3, 1)>.

For C = ( 52 ,
1
2 , 0)

>, we compute the shadowpoint L3. First, we compute the line through C and P :

gCP : x = P + λ2(C − P ) =

1
1
1

+ λ3

 3
2−1
2
−1


Then we compute the intersection of e and gCP : 4

6
−3

1
1
1

+ λ3

 3
2−1
2
−1

− 19 = 0

⇔ 7 + 6λ3 − 19 = 0

⇔ λ3 = 2

For the shadowpoint L3, we get L3 = (4, 0,−1)>.

In summary we have the three points L1 = (1, 2,−1)>, L2 = (1, 3, 1)>, L3 = (4, 0,−1)>.

Now, we have to compute the area of the triangle:

A =
1

2
· || ~L1L2 × ~L1L3|| =

1

2
·

∣∣∣∣∣∣
∣∣∣∣∣∣
0
1
2

×
 3
−2
0

∣∣∣∣∣∣
∣∣∣∣∣∣ =

1

2
·

∣∣∣∣∣∣
∣∣∣∣∣∣
 4

6
−3

∣∣∣∣∣∣
∣∣∣∣∣∣ =

√
61

2
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