Mathematical Foundations of Computer Vision

Example Solution — Assignment 2

Solution of Exercise No. 1
(a) Transform the vector ay = (3, 3)—r given in the basis By to new coordinates by w.r.t. Bs.

Let us first write down the matrices we might use:
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Therefore, we compute:
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(b) Transform the vector by := (2, —1)—r given in the basis By to new coordinates as w.r.t. Bi.

We compute ay = Aby, with A = B 'B,
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Therefore, we obtain:

(c) Compute ||a; — az]|s.
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(d) Compute ||by — ba|| o~ 4—1 making use of the metric induced by the canonical inner product expressed
in the basis Bo. Comment on your result: Did you expect it?
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From the first exercise, we already know:
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Now, we compute in a straight forward way:
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We expected this result, as a coordinate transform of two points does not change their distance measured
at hand of the canonical inner product (equivalent to the Euclidean norm).

Solution of Exercise No. 2

(a) Prove that the length of the vector (x,v,z) " (in Cartesian coordinates) is given by

Va2 +y2 + 22 (1)

by making use of the Theorem of Pythagoras.

First, we compute the length of the diagonal d in the z-y-plane (i.e. the length of the projection of the
vector onto this plane).

Using the Theorem of Pythagoras, we get:

d? =22 +y? ie. d = Va2 42

Then we compute the diagonal of the quader, taking into account also the third coordinate direction.
This is identical to the length of the vector a = (z,y, 2) .

Using the Theorem of Pythagoras, we get:

lall3 =d®+2* = 2 +9° +2° = Va2 + 42 + 22
So the length of the vector is given by /22 + 32 + 22.

(b) Show that for any positive definite, symmetric matrix S € R3%3, the mapping
(Vs : R*xR®* >R with (u,v)s = u' Sv )
is a valid inner product on R®.

‘We need to elaborate on three issues:



e Linearity:

(u,ov + Bw)s = u'S (av+ Pw)
= ou'Sv+ Bu’ Sw
= afu,v)s + Blu,w)g

e Symmetry:

(u,v)s = u' Sy = (uTSv)T =T8Ty VN TSy = (v,u)s
€R pe

e Non-negativity:
(v,v)s >0

automatically holds for non-zero vectors v because S is assumed to be positive definite. Equality to
zero can only hold if v is identical to the vector 0 by the same reason.

In the total of these properties, (-, -} is a valid inner product for S symmetric and positive definite.

Solution of Exercise No. 3

(a) Compute the angle between v, and vy as well as the length of the projection of v, onto vs.

We know that the relation < vy, vy >= ||v1]| - ||v2]| - cos(<t(vy1,v2)) holds.
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For the projection, we have to compute:
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The length of the projection is then given by ||p||:
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(b) Compute a vector n orthogonal to vy and ve with ||n|2 = 1.

We compute:
3 -1 -8
’Il/ = V1 XV = 0 X 2 = 2
4 -2 6
Now, we have to normalize the vector:
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(c) Compute the area A of the parallelogram spanned by v, and vs.

To compute the area A of the parallelogram spanned by v; and vo, we have to compute:
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Solution of Exercise No. 4

Now, let a point light source be given at the point P := (1,1,1)7. Let the light shine onto a triangle patch
determined by the vertices

1 1 5/2
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1/3 1 0

Compute the area of the shadow of the triangle patch given by (A, B, C') on the plane 4x + 6y —3z = 19.

We write the plane onto which the shadow is cast as
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For A = (1, %, %)T we compute the shadowpoint L,. First, we compute the line through A and P =
(1,1,1)7 as
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Then we compute the intersection of e and g4 p:

4 1 0
6 Ll +M | 3 -19=0
-3 1 -

3
& T+4M—-19=0
&S AN =3



For the shadowpoint L1, we thus get: L; = (1,2, —1)T.

For B = (1, %, 1) ", we compute the shadowpoint L. First, we compute the line through B and P:
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Then we compute the intersection of e and gpp:
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For the shadowpoint Lo, we get Ly = (1,3,1)7.

For C' = (g, %, 0) ", we compute the shadowpoint L. First, we compute the line through C and P:
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For the shadowpoint L3, we get Lz = (4,0, —1)T.
In summary we have the three points L; = (1,2, —1)7, Ly = (1,3,1)T, L3 = (4,0,—1) "

Now, we have to compute the area of the triangle:
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