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Chapter 1

Three-Dimensional Space

We identify a point p in the three-dimensional (3-D) space with the coordinates

~X := (X1, X2, X3)> =

 X1

X2

X3

 =

 X
Y
Z

 ∈ R3 (1.1)

We will talk about points and coordinates as if they were the same thing.

The 3-D space can be represented by a Cartesian coordinate frame which means
that the coordinate axes are pairwise right-angled.

We are now heading for measuring distances and angles. To this end, we need
vectors and an inner product defining a metric.

1.1 Vectors

We need some definitions.

Definition 1.1.1 (vector, base point) A vector v is determined by a pair of
points p, q, and is defined as the directed arrow connecting p to q, denoted v = ~pq.
The point p is the base point of v.

If p and q have coordinates ~X and ~Y , respectively, then v has coordinates

v := ~Y − ~X ∈ R3 (1.2)

We distinguish the two concepts of a bound vector (as above) and a free vector, a
vector which does not depend on its base point.
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To make the latter precise, if we have two pairs of points (p, q) and (p′, q′) with
coordinates satisfying

~Y − ~X = ~Y ′ − ~X ′ (1.3)

they define the same free vector. For a free vector v, one may safely assume that
the base point is the origin of the Cartesian frame:

~X = ~0 and ~Y = v (1.4)

The set of all free vectors forms a vector space. As an example for this, one may
think of the R3, where the linear combination of two vectors v := (vx, vy, vz)

> and

u := (ux, uy, uz)
> using scalars α, β in R is defined by

αv + βu =

 αvx + βux
αvy + βuy
αvz + βuz

 (1.5)

For convenience, we recall the underlying definition of a vector space.

Definition 1.1.2 (vector space) A set of vectors V is a vector space over R if
the following structural requirements are met:

Closedness

(i) Given any v1, v2 in V and any α, β in R,
the linear combination v = αv1 + βv2 is again a vector in V .

Addition of vectors

(ii) The addition of vectors is commutative

(iii) and associative;

(iv) there is an identity element ~0 w.r.t. addition, i.e. v +~0 = v;

(v) there is an inverse element ’−v’, such that v + (−v) = ~0 for any v.

Multiplication with a scalar respects the structure of R

(vi) α (βv) = (αβ) v

(vii) 1v = v

(viii) 0v = ~0

Addition and multiplication with a scalar are related by the distributive laws

(ix) (α + β) v = αv + βv

(x) α (v + u) = αv + αu
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1.2 Linear Independence and Change of Basis

We now review important basic notions associated with a vector space V . We may
silently assume V = Rn.

Definition 1.2.1 (subspace) A subset W of a vector space V is called a subspace
if

(i) the zero vector ~0 is in W and

(ii) it holds αw1 + βw2 ∈ W for all α, β in R and any w1, w2 in W .

Definition 1.2.2 (span) Given a set of vectors S = {vi}mi=1, the subspace spanned
by S is the set of all linear combinations

span (S) :=
m∑
i=1

αivi (1.6)

for α1, . . . , αm ∈ R.

Example 1.2.1 The two vectors v1 = (1, 0, 0)> and v2 = (0, 1, 0)> span a sub-
space of R3 whose vectors are of the general form v = (x, y, 0)>.

Definition 1.2.3 (linear dependence/independence) A set of vectors S =
{vi}mi=1 is linearly independent if the equation

α1v1 + α2v2 + . . .+ αmvm = ~0 (1.7)

implies α1 = α2 = . . . = αm = 0. The set S is said to be linearly dependent if
there exist α1, α2, . . . , αm not all zero such that (1.7) is satisfied.

Definition 1.2.4 (basis) A set of vectors B = {bi}ni=1 of a vector space V is said
to be a basis if B is a linearly independent set and if span(B) = V .

Let us now suppose that B and B′ are two bases of a linear space V . Then:

1. B and B′ contain exactly the same number of linearly independent vectors.
This number, say n, is the dimension of V .
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2. Let B = {bi}ni=1 and B′ = {b′i}ni=1. Then each basis vector of B can be
expressed as

bj = a1jb
′
1 + a2jb

′
2 + . . .+ anjb

′
n =

n∑
i=1

aijb
′
i (1.8)

with some aij ∈ R.

3. Any vector v ∈ V can be written in terms of either of the bases:

v = x1b1 + x2b2 + . . .+ xnbn = x′1b
′
1 + x′2b

′
2 + . . .+ x′nb

′
n (1.9)

where the coefficients xi, x
′
i ∈ R are the coordinates of v w.r.t. each basis.

We denote by x := (x1, x2, . . . , xn)> and x′ := (x′1, x
′
2, . . . , x

′
n)> the corre-

sponding coordinate vectors.

We may arrange the basis vectors B = {bi}ni=1 and B′ = {b′i}ni=1 as columns of two
n× n matrices and also call them B and B′, respectively:

B := [b1, b2, . . . , bn] ∈ Rn×n and B′ := [b′1, b
′
2, . . . , b

′
n] ∈ Rn×n (1.10)

Then we can express as by (1.8) the basis transformation between B and B′ via

[b1, b2, . . . , bn] = [b′1, b
′
2, . . . , b

′
n]


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , i.e. B = B′A (1.11)

Let us comment, that the practical role of the basis transformation is to encode
how coordinates change when going over from one basis to another.

In this context, let us elaborate on the role of the matrix A = (aij) ∈ Rn×n. For
this, let us apply both sides of the equation in (1.11) at a coordinate vector x given
in the ’old’ basis B:

Bx = B′Ax (1.12)

To emphasize the rough idea of what follows, let us understand B and B′ as two
different parameterizations of the same space, and x is given in terms of the ’old’
parameterization B. We highlight making use of two brackets the usual ordering
in which operations are carried out on the right hand side:

Bx = B′ (Ax) (1.13)
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This means, the matrix A takes the coordinate vector x given in the parameteri-
zation B and makes it readable in terms of the new parameterization B′.

Consequently, the role of the matrix A is to transform B to B′.

Since this transformation must go either way, A is invertible, so that

B′ = BA−1 (1.14)

In analogy to the above interpretation, we note that A−1 transforms B′ to B.

For a vector v = Bx = B′x′ as in (1.9) we have

v = Bx = B′Ax (1.15)

Consequently, the vector Ax in the latter formula gives us the coordinates of v
in terms of the basis B′. Therefore we obtain by (1.15) the transformation of
coordinates of a vector, here in terms of the coordinates x in the basis B into the
coordinates x′ in the basis B′:

x′ = Ax (1.16)

The transformation of coordinates going the inverse way is given by substituting
B′ as by (1.14) and following the same procedure as discussed.

1.3 Inner Product and Orthogonality

We now deal with vectors in Rn.

Definition 1.3.1 (inner product) A function

〈·, ·〉 : Rn × Rn → R (1.17)

is an inner product if

(i) 〈u, αv + βw〉 = α〈u, v〉+ β〈u,w〉 for all α, β ∈ R

(ii) 〈u, v〉 = 〈v, u〉

(iii) 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 ⇔ v = ~0

For a vector v,
√
〈v, v〉 is called its norm, thus the inner product induces a metric.

A standard basis of the Rn is the set of vectors

e1 := (1, 0, 0, . . . , 0)> , e2 := (0, 1, 0, . . . , 0)> , . . . , en := (0, 0, . . . , 0, 1)> (1.18)

The identity matrix I := [e1, e2, . . . , en] encodes these vectors as columns.
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Definition 1.3.2 (canonical inner product) For vectors x := (x1, x2, . . . , xn)>

and y := (y1, y2, . . . , yn)> in Rn, the canonical inner product is given by

〈x, y〉 := x>y = x1y1 + x2y2 + . . .+ xnyn (1.19)

This inner product induces the Euclidean norm, or 2-norm, which measures the
length of a vector as

‖x‖2 =
√
x>x =

√
x2

1 + x2
2 + . . .+ x2

n (1.20)

If we employ another basis B′ instead of B = I so that x′ = Ax and y′ = Ay, then
the inner product in terms of the new coordinates is

〈x, y〉 = x>y =
(
A−1x′

)> (
A−1y′

)
= (x′)

>
A−>A−1y′ (1.21)

with A−> := (A−1)
>

. We denote the expression of the canonical inner product
with respect to the new basis B′ by

〈x′, y′〉A−>A−1 := (x′)
>
A−>A−1y′ (1.22)

Remark 1.3.1 The aim in defining a canonical inner product as well as of its
representation (1.22) is, that angles and distances between points (as measured
using the canonical inner product) stay the same when we transform bases and
point coordinates.

We conclude the presentation of the inner product by defining orthogonality.

Definition 1.3.3 (orthogonality) Two vectors x, y are said to be orthogonal if
their inner product is zero:

x ⊥ y ⇔ 〈x, y〉 = 0 (1.23)

10



1.4 The Cross Product

While the inner product of two vectors is a scalar number, the cross product of
two vectors is a vector as defined below.

Definition 1.4.1 (cross product) Given two vectors u := (u1, u2, u3)> and v :=
(v1, v2, v3)> in R3, their cross product is given by

u× v :=

 u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 ∈ R3 (1.24)

It is easy to verify that

〈u× v, u〉 = 〈u× v, v〉 = 0 (1.25)

and
u× v = −v × u (1.26)

Therefore, the cross product of two vectors is orthogonal to each of its factors, and
the order of factors defines an orientation.

Example 1.4.1 For e1 = (1, 0, 0)> and e2 = (0, 1, 0)>, we compute

e1 × e2 =

 0 · 0− 0 · 1
0 · 0− 1 · 0
1 · 1− 0 · 0

 =

 0
0
1

 = e3 (1.27)

This means, for a standard Cartesian frame, the cross product of the principal
axes X and Y gives the principal axis Z. This is the right-hand rule.

If we fix u in (1.24), the cross product defines a linear mapping v 7→ u× v which
can be written in terms of the matrix û ∈ R3×3 defined as

û :=

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 (1.28)

so that
u× v = ûv (1.29)

Let us comment on the structure of the matrix û.
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Definition 1.4.2 (skew symmetric matrix) A matrix M ∈ R3×3 is skew sym-
metric, i.e. M> = −M , if and only if M = û for some u ∈ R3.

By the structure of entries in û, it is evident that there is a ono-to-one mapping
between R3 and the set of skew symmetric 3× 3 matrices. Moreover, the addition
of skew symmetric matrices as well as the multiplication with a scalar preserves
skew symmetry. This leads to to the following conclusion.

Proposition 1.4.1 The set of skew symmetric 3 × 3 matrices has the structure
of a vector space. This space of skew symmetric matrices is isomorphic (’of the
same shape as’) the R3.

The corresponding isomophism is defined via the hat operator and its inverse, the
vee operator :

∧(u) := û and ∨ (û) := u (1.30)

1.5 Excursion on Vector Products

The aim of this paragraph is to recall and illuminate some useful properties of the
inner product and the cross product.

The basic tool we will rely on is the Theorem of Pythagoras

a2 + b2 = c2 (1.31)

for a right-angled triangle defined by points (p1, p2, p3) where c is the length of the
hypotenuse.

Let us recall the geometrical definition of sine and cosine using the unit circle, i.e.

p1 := ~0, p2 := (cosα, 0)> , p3 := (cosα, sinα)> (1.32)

where α is the angle between ~p1p2 and ~p1p3, and

sinα :=
A

H
:=

|opposite|
|hypotenuse|

, cosα :=
G

H
:=

|adjacent|
|hypotenuse|

(1.33)

Let us stress that the definitions in (1.33) are independent of a scaling paramater
s, e.g.

cosα =
G

H
=

G · s
H · s

(1.34)

This implies:
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• One may scale the complete triangle (p1, p2, p3) to an arbitrary multiple of
the vector ~p1p3 without changing the value of cosα.

• When scaling the vector ~p1p3 to obtain a new point p′3 := s′ · ~p1p3, the point
p′2 := s′ · ~p1p2 is always given by letting fall a perpendicular from p′3 in the
direction of ~p1p2.

More generally, we obtain, where ‖.‖ without index denotes from now on the
Euclidean distance:

Proposition 1.5.1 Let ~a and ~b be two free vectors in R2. Then the projection of
~a on the direction of ~b is given by

proj~b (~a) = ‖~a‖ · cosα︸ ︷︷ ︸
projected length of ~a

·
~b

‖~b‖︸︷︷︸
direction

(1.35)

where α is the angle between ~b and ~a.

Let us now generalize the Theorem of Pythagoras:

Theorem 1.5.1 (of Ghiyath Al-Kashi (1380-1429)) Consider a triangle with
vertices of lengths a, b and c, and where γ is the angle opposite of the side corre-
sponding to c. Then it holds:

c2 = a2 + b2 − 2ab cos γ (1.36)

Proof 1 Without loss of generality, let us place the triangle in a Cartesian frame
by

p1 := (b cos γ, b sin γ)> , p2 := (a, 0)> , p3 := ~0 (1.37)

where γ is the angle between ~p3p2 and ~p3p1.

Letting fall a perpendicular from p1 onto the direction ~p3p2 gives the point p4 with

p4 := (b cos γ, 0)> (1.38)

By the coordinates in (1.37), we obviously have

b′ := ‖ ~p4p1‖ = b sin γ and a′ := ‖ ~p4p2‖ = |a− b cos γ| (1.39)
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We apply the Theorem of Pythagoras for the triangle (p1, p4, p2) with c = ‖ ~p2p3‖
to obtain

c2 = (a′)
2

+ (b′)
2

(1.39)⇔ c2 = (a− b cos γ)2︸ ︷︷ ︸
|a−b cos γ|2=(±1)2(a−b cos γ)2

+ (b sin γ)2

⇔ c2 = a2 − 2ab cos γ + b2 cos2 γ + b2 sin2 γ︸ ︷︷ ︸
=b2(cos2 γ+sin2 γ)

⇔ c2 = a2 + b2 − 2ab cos γ (1.40)

since cos2 γ + sin2 γ = 1.

We now show how the canonical inner product is related to the angle between
vectors.

Theorem 1.5.2 Let ~a, ~b be two free vectors in Rn, n ≥ 2, and let θ be the angle
between them. Then it holds

〈~a,~b〉 = ‖~a‖ · ‖~b‖ · cos θ (1.41)

Proof 2 We define the difference vector

~c := ~a−~b (1.42)

creating a triangle by ~a,~b,~c in a twodimensional subspace of Rn. By the Theorem
of Al-Kashi we have

‖~c‖2 = ‖~a‖2 + ‖~b‖2 − 2‖~a‖‖~b‖ cos γ (1.43)

We also have

‖~c‖2 = 〈~a−~b,~a−~b〉 = 〈~a,~a〉 − 〈~b,~a〉 − 〈~a,~b〉+ 〈~b,~b〉 (1.44)

so that

‖~c‖2 = ‖~a‖2 + ‖~b‖2 − 2〈~a,~b〉 (1.45)

Equating the right-hand sides of (1.43) and (1.45) gives the desired result.
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Let us emphasize that by (1.41) the inner product gieves a measure for the paral-
lelity of two vectors, since the cosine becomes larger the more two vectors are in
parallel.

Let us now stay in R3 and consider also the cross product.

One may easily validate the Lagrange identity

‖~a×~b‖2 = ‖~a‖2 · ‖~b‖2 − 〈~a,~b〉2 (1.46)

which we use in the following.

Theorem 1.5.3 For ~a,~b ∈ R3, the number ‖~a×~b‖ is the area of the parallelogram

spanned by ~a and ~b.

Proof 3 Let θ be the angle between ~b and ~a, so that 〈~a,~b〉 = ‖~a‖ · ‖~b‖ · cos θ. By
(1.46) we then have

‖~a×~b‖2 = ‖~a‖2 · ‖~b‖2 − ‖~a‖2 · ‖~b‖2 · cos2 θ = ‖~a‖2 · ‖~b‖2 ·
(
1− cos2 θ

)
(1.47)

which implies

‖~a×~b‖2 = ‖~a‖2 · ‖~b‖2 · sin2 θ (1.48)

Since ‖~a · sin θ‖ is the height of the parallelogram above the base segment ~b and

‖~b‖ is the length of the latter, ‖~a‖ · ‖~b‖ · |sin θ| is the sought area.

Let us consider an additional vector ~c. By computing the projection onto the
vector ~a×~b, i.e.

proj~a×~b (~c) = ‖~c‖ · cosα · ~a×
~b

‖~a×~b‖
(1.41)
= ‖~c‖ · 〈~c,~a×

~b〉
‖~c‖ · ‖~a×~b‖

· ~a×
~b

‖~a×~b‖
(1.49)

we can compute the height of the parallelepipedon over the base area spanned by
~a and ~b: ∣∣proj~a×~b (~c)

∣∣ =

∣∣∣∣∣〈~c,~a×~b〉‖~a×~b‖

∣∣∣∣∣ ·
∥∥∥∥∥ ~a×~b
‖~a×~b‖

∥∥∥∥∥︸ ︷︷ ︸
=1

(1.50)

By multiplying height with base area ‖~a×~b‖ follows

15



Proposition 1.5.2 The volume V of the parallelepipedon given by (~a,~b,~c) is given
by the scalar triple product

V =
∣∣∣〈~c,~a×~b〉∣∣∣ (1.51)

The latter expression for V can algebraically be made identical to

V =
∣∣∣det

[
~a,~b,~c

]∣∣∣ (1.52)

To conclude, let us emphasize that while the inner product gives a measure for
parallelity of two vectors, the cross product enables to measure orthogonality of two
vectors: As observable via (1.48), the cross product becomes larger if the absolute
of the sine function i.e. the orthogonality of input vectors grows. Information on
orientation is encoded in addition via the ordering of the input vectors.

1.6 Excursion on Complex Eigenvalues and Eigen-

vectors of a Matrix

The aim of this paragraph is to elaborate on the role of complex eigenvalues of a
matrix and the associated eigenvectors. In preparation of a later application, we
make use of an example concerned with a rotation matrix.

We consider a rotation in 2-D as modeled by a rotation matrix

R (θ) =

(
cos θ − sin θ
sin θ cos θ

)
(1.53)

where the direction of rotation is, in a Cartesian frame, counterclockwise for pos-
itive θ.

Let us briefly discuss eigenvalues and eigenvectors of R (θ). Concerning the eigen-
values, an easy computation gives

det(R (θ)−λI) =

∣∣∣∣ cos θ − λ − sin θ
sin θ cos θ − λ

∣∣∣∣ = 0 ⇔ λ2−2λ cos θ+1 = 0 (1.54)

so that one can verify that the two eigenvalues λ1,2 are

λ+,− = cos θ ± i sin θ where i2 = −1 (1.55)

Can we interpret this result? The fact that we have two complex eigenvalues
shows, that there is no vector except ~0 in 2-D whose orientation in space is kept
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invariant (for general θ!) and which is stretched in space by an eigenvalue λ. This
is a natural result since R (θ) describes a rotation where only ~0 is kept fixed.

We now turn to the eigenvectors. Plugging the concrete λ+,− into the constituting
equation yields

(R (θ)− λ+,−I)

(
x
y

)
= ~0 ⇔

(
∓i sin θ − sin θ

sin θ ∓i sin θ

)(
x
y

)
= ~0 (1.56)

Dividing the latter equations by sin θ results in the set of equations

∓ix = y and ± iy = x (1.57)

Fixing x = 1 – which is just chosen but not required – we obtain via the two sign
combinations in (1.57) the corresponding two (unnormalized) eigenvectors

v+ :=

(
1
−i

)
and v− :=

(
1
i

)
(1.58)

Let us stress that one could have fixed alternatively x = 1 + i (just as an example
for some number) leading to two different eigenvectors as in (1.58). The particular
choice x = 1 has the property that we can interprete the situation geometrically,
since the resulting entries of v+, v− are either real or imaginary.

For a geometric interpretation, consider the following. Understanding the entries
of v+, v− as coordinates (R, iR), then the corresponding coordinate vectors are

ṽ+ :=

(
1
−1

)
and ṽ− :=

(
1
1

)
(1.59)

for which we have

〈ṽ+, ṽ−〉 = 〈
(

1
−1

)
,

(
1
1

)
〉 = 1− 1 = 0 (1.60)

We observe that the two (unnormalized) eigenvectors are orthogonal. This is what
we expect from the eigenvectors since the matrix R(θ) is orthogonal.

Now we elaborate a bit more on the eigenvectors with complex entries. Since R (θ)
is orthogonal, we generally expect that there is a complete system of eigenvectors.
Since we have complex eigenvalues and the matrix R (θ) is not symmetric, one can
expect that the complete system of eigenvectors spans C2, not R2.
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What is actually done when we multiply the eigenvectors by a complex eigenvalue
is easily illustrated using the polar form of complex numbers. For z = a+ ib with
a, b ∈ R, one may write alternatively

z = r · eiϕ = r · (cosϕ+ i · sinϕ) with r, ϕ ∈ R (1.61)

with the relations a = r · cosϕ and b = r · sinϕ. Multiplying two such complex
numbers gives

r · eiϕ · s · eiψ = r · s · ei(ϕ+ψ) (1.62)

We observe that the multiplication of two complex numbers means to (i) add up
the angles and (ii) to multiply the distances from the origin w.r.t. the polar form.
Consequently, recalling that

λ+,− = cos θ ± i sin θ = e±iθ (1.63)

we see that by multiplying with λ+,− we only perform a rotation by the angle ±θ
while no stretching takes place because |λ+,−| = 1.

Since in the constituting formula R(θ)x = λx we multiply the eigenvalue with an
eigenvector, we see that we rotate via λ+,− as above the individual components
of x in polar form. Consequently, we perform a rotation in C2; note that this is
natural since R(θ) also describes a rotation.

Let us now consider for a moment an eigenvector v

R(θ)v = eiθv (1.64)

Since R(θ) only has real entries, it holds

R(θ)v = eiθv ⇒ R(θ)v = eiθv ⇒ R(θ)v̄ = e−iθv̄ (1.65)

To fix the result, if we have two complex conjugate eigenvalues, also the eigenvec-
tors are their complex conjugate, respectively.

Getting back to the rotation matrix, let us consider two eigenvectors of the eigen-
values λ+,− = e±iθ. Making use of our last result, these two eigenvectors can be
written as v+ = v and v− = v̄.

Specifying the vectors

v1 :=
1

2
(v + v̄) and v2 :=

i

2
(v − v̄) (1.66)
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we observe that they have only real-valued entries. We can compute

R(θ)v1 = R(θ)

[
1

2
(v + v̄)

]
=

1

2
(R(θ)v +R(θ)v̄) =

1

2
(λ+v + λ−v̄) (1.67)

Writing λ+,− in terms of sine and cosine, we have

1

2
(cos θv + i sin θv + cos θv̄ + i sin θv̄) = cos θv1 + sin θv2 (1.68)

An analogous computation can be done for R(θ)v2, so that we summarize

R(θ)v1 = cos θv1 + sin θv2 and R(θ)v2 = − cos θv1 + sin θv2 (1.69)

Let us note that we may identify v1, v2 with their normalized versions without
change in the above computations but division by ‖vi‖, i = 1, 2.

These developments show that by v1, v2 we have achieved:

• It is a real-valued basis of the rotation plane;

• vectors given in terms of this basis are rotated in the usual way in R2;

• generally speaking, a meaningful real-valued setting can sometimes be ex-
tracted from complex eigenvalues and eigenvectors.
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Chapter 2

Rigid-Body Motion

Consider an object moving in front of a camera. As a first approach to describe
the motion, one could track the points ~X on the object in time t (beginning at

t = 0), writing ~X(t).

To make the rigid property concrete, if ~X(t) and ~Y (t) are two points on the object,
the distance between them is constant:∥∥∥ ~X(t)− ~Y (t)

∥∥∥ = constant ∀t (2.1)

A rigid-body motion/transformation is a family of mappings

g(t) : R3 → R3; ~X(t) 7→ g(t) ~X (2.2)

where ~X := ~X(t = 0), describing how the points on the object move in time while
satisfying (2.1).

If we just look for the mapping between initial and final state, this is a rigid-body
displacement

g : R3 → R3; ~X 7→ g
(
~X
)

(2.3)

Denoting v := ~Y − ~X the difference vector between two points ~X and ~Y on the
object, we obtain after transformation

u = g∗(v) := g
(
~Y
)
− g

(
~X
)

(2.4)

Since g satisfies (2.1), it holds

‖g∗(v)‖ = ‖v‖ (2.5)

for all free vectors v ∈ R3.
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Definition 2.0.1 A mapping g∗ satisfying (2.5) is called Euclidean transforma-
tion. In 3-D, the set of such transformations is denoted by E(3).

However, also operations describing that an object is mirrored fulfill (2.1). In order
to rule out here this kind of mappings, we require Euclidean transformations to
preserve orientations. This is encoded in the following definition.

Definition 2.0.2 A mapping g : R3 → R3 is a rigid-body motion also denoted
as special Euclidean transformation if it preserves the norm and the cross product
of any given vectors:

(norm) ‖g∗(v)‖ = ‖v‖ ∀v (2.6)

(cross product) g∗(v)× g∗(w) = g∗(v × w) ∀v, w (2.7)

The set of all such transformations is denoted by SE(3). Properties like (2.6) and
(2.7) are called invariants of the special Euclidean transform.

Remark 2.0.1 The intuition after (2.7) is as follows. Consider the three vectors
v, w and u := v × w. For given v and w, the vector u is orthogonal to them and
satisfies a right-hand rule before transformation. Transforming then – as in the
left-hand side of (2.7) – v and w via g∗ and taking the cross product of the new
vectors, we compare this to the transform of u, see the right-hand side of (2.7).
Orientation is only preserved if equality is preserved for the three transformed
vectors exactly.

Instead of using the norm in the above definition, we may have chosen instead the
condition that angles are preserved:

〈u, v〉 = 〈g∗(u), g∗(v)〉 ∀u, v ∈ R3 (2.8)

Let us emphasize:

If we use a special Euclidean transform for representing rigid-body motion, then
the preservation of form and orientation of an object is done automatically by the
transform!

Therefore we can represent the configuration of a rigid body by specifying the
motion of just one point, attaching a Cartesian coordinate frame on it for keeping
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track of orientation. We will look for the motion of this coordinate frame relative
to a fixed world/reference frame.

For the coordinate frame, we consider three orthonormal vectors ê1, ê2, ê3 ∈ R3

with

〈êi, êj〉 = δij :=

{
1 for i = j
0 for i 6= j

(2.9)

The vectors are ordered as to form a right-handed frame:

ê1 × ê2 = ê3 (2.10)

Let us check what happens by applying a rigid-body motion g. We have

〈g∗ (êi) , g∗ (êj)〉
(2.8)
= 〈êi, êj〉 = δij (2.11)

and

g∗ (ê1)× g∗ (ê2)
(2.7)
= g∗ (ê1 × ê2) = g∗ (ê3) (2.12)

As expected, the resulting vectors still form a right-handed orthonormal frame.

Evidently, the configuration of a moving object can be entirely specified by two
components of the motion of such an object coordinate frame:

1. The vector between the origin of the world frame and that of the object
coordinate frame, called the translational part T ;

2. the rotation of the object coordinate frame relative to the fixed world frame,
called the rotational part R.

Besides the obvious need to study translations and rotations, let us also take a
more general point of view on geometric transforms :

• The composition of two admissible transforms (one after the other) should
define again an admissible transform;

• the identity transform (doing nothing) should be an admissible transform;

• transforms should be invertible;

• the composition of more than two transforms φi should behave associatively:
φ1 ◦ (φ2 ◦ φ3) = (φ1 ◦ φ2) ◦ φ3

The structure just described is a group structure. Transformations as discussed up
to now can be expressed by matrices. Therefore, we will study group properties
and invariants of some useful sets of matrices.
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2.1 Matrix Groups

We now study a general framework for interesting transformations. At the heart
there is the group notion. It relies on a set and an operation defined on this set.

Definition 2.1.1 Consider the set of invertible matrices

A ∈ Rn×n with det(A) 6= 0 (2.13)

together with the usual matrix multiplication ’·’, i.e.

G :=
({
A ∈ Rn×n ∣∣ det(A) 6= 0

}
, ·
)

(2.14)

G is a group:

1. Closedness – For A,B ∈ G, it holds A ·B ∈ G

2. Associativity – A · (B · C) = (A ·B) · C

3. Neutral element –
There exists I ∈ G, I = [e1, e2, . . . , en], with IA = AI = A for all A ∈ G

4. Inverse element –
For each A ∈ G, there exists B = A−1 ∈ G with AB = BA = I

G is called general linear group GL(n,R).

G represents all linear maps from Rn to Rn by which no geometric information of
a configuration is lost. It is not a commutative group: In general A · B 6= B · A,
e.g.(

1 3
2 0

)
·
(

1 1
1 3

)
=

(
4 10
2 2

)
but

(
1 1
1 3

)
·
(

1 3
2 0

)
=

(
3 3
7 3

)
(2.15)

We will now discuss some specific groups, so-called subgroups of GL(n,R). These
are characterised as follows:

• Of interest is a subset S of {A ∈ Rn×n | det(A) 6= 0} with specific properties;

• on this subset S, the operation ’·’ inherits the structure of GL(n,R);

• especially, (S, ·) is closed.
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An obvious invariant of interest is given by mappings A that preserve volume and
orientation. This gives rise to:

Definition 2.1.2 The special linear group is given by

SL(n,R) :=
{
A ∈ Rn×n ∣∣ det(A) = 1

}
(2.16)

A building block of Euclidean transformations is given by the orthogonal group:

Definition 2.1.3 The orthogonal group consists of matrices with orthonormal
columns or rows:

O(n) :=
{
A ∈ GL(n,R) | A>A = I

}
(2.17)

This definition encodes

〈Ax,Ay〉 = (Ax)>Ay = x>A>Ay
(2.17)
= x>Iy = 〈x, y〉 (2.18)

for any x, y ∈ Rn. Therefore, O(n) represents linear maps that preserve inner
products – and thus Euclidean norms, lengths and angles – of vectors in Rn.

It also follows:

Theorem 2.1.1 For A ∈ O(n) it holds det(A) = ±1.

Proof 4

det(A) = det
(
A>
)

(elementary)

= det (A−1) (since A>A = I, i.e. A> = A−1)

= (det (A))−1 (elementary)

Multiplication with det(A) gives det2(A) = 1, i.e. det(A) = ±1.

The possibility det(A) = −1 implies that mirror operations are allowed, e.g. the
matrix

A =

(
1 0
0 −1

)
with det(A) = −1 (2.19)

realizes in R2 a mirror operation with the x-axis as reflection axis.

In order to rule out such operations, we define:
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Definition 2.1.4 The special orthogonal group SO(n) consists of all orthogonal
matrices A with det(A) = 1, i.e.

SO(n) := O(n) ∩ SL(n,R) (2.20)

The special orthogonal group exactly describes rotations around the origin.

For realizing translations, we have to add a translation vector. This is done via a
special construction:

Definition 2.1.5 The affine group Aff(n) consists of all matrices in R(n+1)×(n+1)

of the form

A =

(
B ~b
~0> 1

)
(2.21)

with B ∈ GL(n,R) and ~b,~0 ∈ Rn.

Let us briefly elaborate on this special construction. For ṽ = Aũ where ṽ := (v, 1)>

and ũ := (u, 1)> with v, u ∈ Rn, it holds

ṽ =

(
v
1

)
= Aũ =

(
B ~b
~0> 1

)(
u
1

)
=

(
Bu+~b

1

)
(2.22)

which implies
v = Bu+~b (2.23)

While the transform is affine, we have nevertheless a linear mapping plus a group
structure. Thus, we may e.g. apply two such transforms one after the other just by
matrix multiplication. The construction in (2.21) enables to include a translation
~b whereas structural group properties are encoded via B.

Let us now include previous concepts into Aff(n).

Definition 2.1.6 The similarity group Sim(n) consists of all matrices in R(n+1)×(n+1)

of the form

A =

(
αB ~b
~0> 1

)
(2.24)

with α ∈ R+, B ∈ O(n) and ~b,~0 ∈ Rn.
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The name of this group arises as it describes exactly similarity mappings in classical
geometry: Translations, rotations, reflections as well as scalings.

Euclidean and special Euclidean transforms can also be put in the matrix group
framework:

Definition 2.1.7 The Euclidean group E(n) where B ∈ O(n) is given by

E(n) := {A ∈ Sim(n) | det(A) = ±1} (2.25)

Definition 2.1.8 The special Euclidean group SE(n) where B ∈ SO(n) is given
by

SE(n) := {A ∈ Sim(n) | det(A) = 1} (2.26)

2.2 Homogeneous Coordinates

Let us consider rigid-body motion g(R, T ) as an affine mapping defined by a ro-
tational part R and a translational part T .

By the special construction of Aff(n), we may write g(R, T ) in its homogeneous
representation

gh =

(
R T
~0> 1

)
(2.27)

Useful coordinates in the context of this representation are homogeneous coordi-
nates.

Appending a ’1’ to the coordinates ~X = (X1, X2, X3)> ∈ R3 of a point p gives its
homogeneous coordinates

~Xh :=

(
~X
1

)
=


X1

X2

X3

1

 ∈ R4 (2.28)

Effectively, concerning the coordinates we have embedded the R3 into a hyperplane
in R4.
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Homogeneous coordinates of a vector v = ~X(q)− ~X(p), where q and p are points
in R3, are defined as the difference between homogeneous coordinates of the two
points:

vh :=

(
v
1

)
=

(
~X(q)

1

)
−
(

~X(p)
1

)
=


v1

v2

v3

0

 ∈ R4 (2.29)

Since in the latter format the zero vector ~0 ∈ R4 is included, this gives rise to a
subspace structure as also all linear operations in R3 are preserved.

In summary, rigid-body motion is described via

SE(3) =

{
gh =

(
R T
~0> 1

) ∣∣∣∣ R ∈ SO(3), T ∈ R3

}
⊂ R4×4 (2.30)

Applying a rigid-body motion at a point p ∈ R3 with homogeneous coordinates
~Xh(p) we obtain

gh ~Xh(p) =

(
R T
~0> 1

)
~Xh(p) =

(
R ~X(p) + T

1

)
(2.31)

The action of a rigid-body motion on a vector v = ~X(q)− ~X(p) ∈ R3 becomes

gh,∗ (vh) = gh ~Xh(q)− gh ~Xh(p) = ghvh =

(
Rv
0

)
(2.32)

Thus, in 3-D we have g∗(v) = Rv since only rotational parts affect vectors.

In summary, rigid-body motion acts differently on points and vectors.

2.3 The Theorem of Euler

Before we discuss the theorem itself, let us investigate its mathematical building
blocks.

We consider again the rotation in 2-D represented by a rotation matrix

R (θ) =

(
cos θ − sin θ
sin θ cos θ

)
(2.33)

where the direction of rotation is, in a Cartesian frame, counterclockwise for pos-
itive θ.
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The rotation matrix R (θ) from (2.33) is easily generalized to 3-D via

Rx (θ) :=

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , Ry (θ) :=

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


and Rz (θ) :=

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


(2.34)

where the lower index of R indicates the axis which is kept fixed. General rotations
can then be obtained by combining these basic rotations:

R := R (α, β, γ) := Rz (γ)Rx (β)Ry (α) (2.35)

where the y − x− z convention for the corresponding Euler angles are used.

Inspecting R (θ) from (2.33) and recalling what we learned on matrix groups, it is
apparent that R (θ) and its generalizations are orthogonal matrices with orthonor-
mal column vectors.

Let us now tackle the main part of this paragraph.

Theorem 2.3.1 (of Leonhard Euler (1707-1783)) Any displacement of a rigid
body such that a point ~0 on the rigid body remains fixed is equivalent to a rotation
about a fixed axis through the point ~0.

Proof 5 We consider the displacement of any point p ∈ R3 to some point P ∈ R3

on the rigid body. Employing a rotation R ∈ SO(3) this reads as

P = Rp (2.36)

Let us compute the eigenvalues and eigenvectors of R. The constituting equation

Rp = λp (2.37)

leads to the characteristic equation

det (R− λI) = 0 (2.38)

Denoting R = (rij), the latter is in detail – after straight forward computation
using e.g. the rule of Sarrus (due to the french mathematician Pierre Frédéric
Sarrus (1798-1861)) – identical to

−λ3 + λ2 (r11 + r22 + r33)

−λ [(r22r33 − r32r23) + (r11r33 − r31r13) + (r11r22 − r21r12)] = 0 (2.39)
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Because R ∈ SO(3) it holds det(R) = 1. As R−1 = R>, it follows directly by
Cramer’s rule A−1 = adj(A)/ det(A) – due to the swiss mathematician Gabriel
Cramer (1704-1752) – that

r11 = r22r33 − r32r23

r22 = r11r33 − r31r13

r33 = r11r22 − r21r12

(2.40)

Making use of these relations in (2.39) leads to

−λ3 + λ2 (r11 + r22 + r33)− λ (r11 + r22 + r33) + 1 = 0 (2.41)

We observe that λ = 1 is an eigenvalue of R.

In other words, there exists a vector v, namely the eigenvector corresponding to
the eigenvalue λ = 1, such that all points on the line αv, α ∈ R, stay invariant
under the rotation R, thus defining the sought rotation axis.

Let us now consider the rotation of a rigid body about v through an angle ϕ.

For points p and P with P = Rp as in (2.36), there is a point Q ∈ span(v) so that
the triangle defined by the vertices (p, P,Q) lives in a plane perpendicular to v.

We may write
P = p+ a1 + a2 (2.42)

where a1 and a2 are orthogonal vectors in the latter plane: The vector a1 is assumed
to point from p to Q, and it gives the base point for the vector a2 such that (2.42)
holds.

Our aim is now to specify a1 and a2 in terms of the rotation axis v and the angle
of rotation ϕ.

The equation (2.42) gives rise to

Rp = p+ a1 + a2 (2.43)

Since Q is on the rotation axis, it is the center of the rotation. Thus, it holds for
θ being the angle between ~0Q and ~0p

‖ ~Qp‖ = ‖ ~QP‖ = ‖p‖ sin θ = |v × p| (2.44)

where we used |v × p| = ‖v‖‖p‖ sin θ and ‖v‖ = 1. Analogously follows

‖a2‖ = ‖ ~QP‖ sinϕ = |v × p| sinϕ (2.45)
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where ϕ is the angle between ~Qp and ~QP in the triangle (p, P,Q). Since a2 is

perpendicular to v and ~Qp, it also holds

a2 = sinϕ (v × p) (2.46)

Having described a2, we now turn to a1.

The vector ~Qp can be expressed via the projection

~Qp = p− 〈p, v〉v (2.47)

Therefore
−a1 = ~Qp− cosϕ ~Qp = (1− cosϕ) (p− 〈p, v〉v) (2.48)

Subsituting a1 and a2 in (2.43) gives

Rp = p+(cosϕ− 1) (p− 〈p, v〉v)+sinϕ (v × p) = cosϕ·p−cosϕ〈p, v〉v+〈p, v〉v+sinϕv̂
(2.49)

with v̂ defined in accordance to (1.28). Making use of the relation(
vv>

)
p = v

(
v>
)
p = v〈v, p〉 = 〈v, p〉v (2.50)

we obtain the formula of Rodrigues (after the french mathematician Benjamin
Olinde Rodrigues (1795-1851))

R = I cosϕ+ v̂ sinϕ+ vv> (1− cosϕ) (2.51)

By Rodrigues’ formula one can easily compute the angle ϕ and the axis of rotation
v from R. The corresponding equations derived from (2.51) are

cosϕ =
1

2
(trace(R)− 1) (2.52)

where trace(R) = r11 + r22 + r33, and

v̂ =
1

2 sinϕ

(
R−R>

)
(2.53)

where one can extract v from v̂.

Let us now derive a canonical representation of any rotation matrix which allows
us to view it as a rotation through an angle φ about the z − axis.

To this end, let us recall that we found for r := r11 +r22 +r33 by the formula (2.41)

−λ3 + λ2r − λr + 1 = 0 (2.54)
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the eigenvalue λ3 = 1 and the normalized eigenvector p3 = v for the rotation axis.

Factoring (2.54) and multiplying with −1 one obtains

(λ− 1)
(
λ2 + λ(1− r) + 1

)
(2.55)

Defining then

cosφ :=
1

2
(r − 1) (2.56)

one may easily check that the remaining eigenvalues are

λ1 = eiφ and λ1 = e−iφ (2.57)

Following the extensive discussion in Section 1.6, we can construct a real-valued
basis of the corresponding rotation plane, composed of normalized vectors v1, v2.
Considering then the triad of orthonormal vectors (v1, v2, v), it follows by the
interpretation of v as the ’z-axis’ that R can be written as

R = QΛQ> where Q = [v1, v2, v] and Λ =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (2.58)

If we view the rotation from a new frame whose orientation is given by the coordi-
nate transfrom Q, it is clear that in this new frame, the displacement is a rotation
about the z-axis.

In formulae, we have after the coordinate transform

Qx′ = x , i.e. x′ = Q>x (2.59)

a rotation in this new frame about the z-axis performed by Λ, and a final back-
transform mapping to the old coordinate system:

Rx = QΛQ>x = Q Λx′︸︷︷︸
rotation about ’z-axis’︸ ︷︷ ︸

gives back rotated points in old coordinate system

(2.60)

2.4 The Theorem of Chasles

As an extension of the Theorem of Euler, we now discuss the following assertion:

Theorem 2.4.1 (of Michel Chasles (1793-1880)) A general rigid-body displace-
ment can be produced by a translation along a line followed (or preceded) by a
rotation about that line.

32



Proof 6 We consider a general homogeneous transfer matrix

gh =

(
R T
~0> 1

)
(2.61)

We consider the following similarity transform of gh:

Λ =

(
Q> −Q>c
~0> 1

)(
R T
~0> 1

)(
Q c
~0> 1

)
(2.62)

which computes to

Λ =

(
Q>RQ Q>Rc−Q>c+Q>T
~0> 1

)
(2.63)

Let us comment that a similarity transform gives an equivalent mapping to the
original mapping, just using a different basis. In accordance, the role of the matrix
Q is that of a basis transform.

We choose Q as for the canonical representation of the rotation matrix, i.e.

Q = [v1, v2, v] (2.64)

where v1, v2, v are the eigenvectors of R. As by (2.58), this leads to

Q>RQ =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (2.65)

so that the upper left 3 × 3 submatrix of Λ reduces to the rotation matrix corre-
sponding to a rotation about the z-axis.

Defining
c′ := Q>c and T ′ := Q>T (2.66)

the translation part of Λ can be formulated as

Q>Rc−Q>c+Q>T

= Q>RQQ>︸ ︷︷ ︸
=I

c− IQ>c+Q>T

=
(
Q>RQ− I

)
Q>c+Q>T

=

 cosφ− 1 − sinφ 0
sinφ cosφ− 1 0

0 0 0

 c′1
c′2
c′3

+

 T ′1
T ′2
T ′3

 (2.67)
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Let us have a closer look. Provided the upper left 2× 2 submatrix of Q>RQ− I
is invertible, we can find c′1, c

′
2 such that(

cosφ− 1 − sinφ
sinφ cosφ− 1

)(
c′1
c′2

)
= −

(
T ′1
T ′2

)
(2.68)

In other words, we can always solve the first two equations of(
Q>RQ− I

)
c′ = −T ′ (2.69)

for the first two components of c′, and by (2.67) the third component of c′ can be
set simply to zero.

Putting these pieces together, Λ has the form

Λ =


cosφ − sinφ 0 0
sinφ cosφ 0 0

0 0 1 T ′3
0 0 0 1

 (2.70)

so that the displacement can be described by a rotation about the z-axis through
an angle φ and a simultaneous translation along the z-axis through a distance T ′3.

Let us comment on two points within the proof:

• As the displacement reminds on the motion of a screw, it is sometimes called
screw displacement and the axis is called screw axis.

• If the upper left submatrix of Q>RQ− I is not invertible, then Q>RQ = I
must hold. This means that Λ describes a pure translation.

The question arises how to find a normalized vector v along the screw axis and
the angle of rotation φ about the screw axis.

To this end one can employ the formulae of Rodrigues, see (2.52) and (2.53).
However, in order to apply them in the current context of the screw displacement,
one needs to find the position vector of one point on the screw axis and the
translation of a point on the rigid body along the screw axis.

If Tp denotes the projection of the vector T onto a plane perpendicular to v, i.e.

Tp := T − 〈T, v〉v (2.71)
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then we may choose

Q := [a, b, v] (2.72)

where

a :=
Tp
‖Tp‖

and b := a× v (2.73)

Let us for convenience recall the equation (2.68)(
cosφ− 1 − sinφ

sinφ cosφ− 1

)
︸ ︷︷ ︸

=:M

(
c′1
c′2

)
= −

(
T ′1
T ′2

)
with c′ = Q>c and T ′ = Q>T

(2.74)
With Q as in (2.72) we have

Q>T =

 a>T
b>T
v>T

 (2.75)

and consequently (
T ′1
T ′2

)
=

(
a>T
b>T

)
(2.76)

Making use of the standard formula(
e f
g h

)−1

=
1

eh− fg

(
e −f
−g h

)
(2.77)

we immediately compute M−1 as by (2.74):

M−1 =
1

(cosφ− 1)2 + sin2 φ

(
cosφ− 1 sinφ
− sinφ cosφ− 1

)
(2.78)

Employing (2.76) and (2.78) we obtain from (2.74)(
c′1
c′2

)
=

−1

(cosφ− 1)2 + sin2 φ

(
cosφ− 1 sinφ
− sinφ cosφ− 1

)(
a>T
b>T

)
(2.79)

Let us now simplify the terms occuring in (2.79).

By construction of b in (2.73), it is built as the cross product of two vectors a and
v with T ∈ span(a, v), so that

b>T = 〈b, T 〉 = 0 (2.80)
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Furthermore

(cosφ− 1)2 + sin2 φ = 1− 2 cosφ+ cos2 φ+ sin2 φ︸ ︷︷ ︸
=1

= 2 (1− cosφ) (2.81)

and

a>T = 〈T − 〈T, v〉v, T 〉
= 〈T − 〈T, v〉v, T − 〈T, v〉v + 〈T, v〉v〉
= ‖Tp‖+ 〈T − 〈T, v〉v︸ ︷︷ ︸

⊥v

, 〈T, v〉v︸ ︷︷ ︸
‖v

〉

= ‖Tp‖ (2.82)

By (2.80) and (2.82) follows(
a>T
b>T

)
=

(
1
0

)
a>T =

(
1
0

)
‖Tp‖ (2.83)

Putting things together we obtain(
c′1
c′2

)
=

−‖Tp‖
2 (1− cosφ)

(
cosφ− 1 sinφ
− sinφ cosφ− 1

)(
1
0

)
=

‖Tp‖
2 (1− cosφ)

(
1− cosφ

sinφ

)
(2.84)

Letting as before the third component of c′ be zero we conclude

c′ =
‖Tp‖

2

 1
sinφ

1−cosφ

0

 (2.85)

so that

c = Qc′ = [a, b, c] · ‖Tp‖
2

 1
sinφ

1−cosφ

0

 =
‖Tp‖

2

(
a+

sinφ

1− cosφ
b

)
(2.86)

Recalling the interpretation of Λ, we see that by c we obtained the position vector
of a point on the screw axis. Furthermore, the displacement of a point on this axis
is given by the third component of T ′, i.e.

T ′3 = 〈v, T 〉 (2.87)

We can also compute the so-called pitch of the screw, i.e. the translation along the
axis as

h =
T3

φ
(2.88)
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2.5 Exponential Coordinates

The aim of this paragraph is to study a convenient way to parameterize rigid-body
motions.

An important tool will be the matrix exponential

eM :=
∞∑
k=0

Mk

k!
for M ∈ Rn×n (2.89)

We will also make use of

d

dt
etM =

d

dt

∞∑
k=0

(tM)k

k!

=
d

dt

(
1

1
t0M0 +

1

1
t1M1 +

1

2
t2M2 +

1

6
t3M3 + . . .

)
= M

(
I + 2

1

2
tM + 3

1

6
t2M2 + . . .

)
(2.90)

so that
d

dt
etM︸︷︷︸

=:A(t)

= Ȧ(t) = MetM = MA(t) (2.91)

Let us consider first rotations.

Given a trajectory R(t) : R→ SO(3) that describes continuous rotational motion,
we must have by definition of SO(3)

R(t)R>(t) = I ∀t (2.92)

Computing the derivative w.r.t. the time t, we obtain

Ṙ(t)R>(t) +R(t)Ṙ>(t) = 0 ∀t (2.93)

so that

Ṙ(t)R>(t) = −
(
ṘR>(t)

)>
∀t (2.94)

This reflects the fact that the matrix Ṙ(t)R>(t) is skew symmetric. Thus, there
must exist a vector w(t) ∈ R3 such that

Ṙ(t)R>(t) = ŵ(t) (2.95)

Multiplication with R(t) from the right gives

Ṙ(t) = ŵ(t)R(t) (2.96)
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Let us observe, that if R(t0) = I for t = t0, we have Ṙ(t0) = ŵ(t0). Hence,
around the identity matrix I, the skew symmetric matrix ŵ(t0) gives a first-order
approximation to a rotation matrix:

Ṙ(t = t0) ≈ R(t0 + dt)−R(t0)

dt
⇒ R(t0 + dt) ≈ I + dtŵ(t0) (2.97)

We formalize this observation as follows.

Definition 2.5.1 Let the space of all skew symmetric matrices be denoted by

so(3) :=
{
ŵ ∈ R3×3 | w ∈ R3

}
(2.98)

It is called the tangent space at the identity of the rotation group SO(3).

As a remark, this definition is easily generalized: For R(t) not the identity matrix,
the tangent space is again so(3), transported to the location R(t), so that R(t +
dt) ≈ R(t) + dtŵ(t).

Comparing (2.96) with (2.91) and assuming R(t0 = 0) = I we must have

R(t) = eŵt (2.99)

In general, t can be absorbed into w, so that we have

R = eŵ (2.100)

In conclusion, the matrix exponential defines a mapping from so(3) to SO(3), the
so-called exponential map

exp : so(3)→ SO(3) , ŵ 7→ eŵ (2.101)

While one can show that any given rotation matrix R can thus be expressed by
exponential coordinates w ∈ R3, these coordinates are unfortunately not uniquely
defined.

Let us consider now the continuous motion of a rigid body described by a trajectory
in SE(3) in homogeneous representation:

g(t) := gh(t) =

(
R(t) T (t)
~0> 1

)
∈ R4×4 (2.102)
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In analogy to the case of pure rotation, let us first compute ġ(t)g(t) and have a
look at its structure. We compute (valid for any t)

g−1 =

(
R T
~0> 1

)−1

=

(
R> −R>T
~0> 1

)
(2.103)

so that for any t

ġg−1 =

(
ṘR> Ṫ − ṘR>T
~0> 0

)
(2.104)

We already know that there exists w ∈ R3 such that ŵ(t) = ṘR>. Let us define a
vector v := v(t) with

v := Ṫ − ŵT (2.105)

Then (2.104) can be written as

ġg−1 =

(
ŵ v
~0> 0

)
=: ξ̂ ∈ R4×4 (2.106)

with ξ̂ = ξ̂(t), and we have
ġ = ξ̂ · g (2.107)

where ξ̂ can be understood as the ’tangent vector’ along the curve of g(t). It can
be used to approximate g(t) locally:

g(t+ dt) ≈ g(t) + ξ̂(t)g(t)dt =
(
I + ξ̂(t)dt

)
g(t) (2.108)

A matrix of the form ξ̂ is called a twist.

Definition 2.5.2 The set of all twists is denoted by

se(3) :=

{
ξ̂ =

(
ŵ v
~0> 0

)
| ŵ ∈ so(3), v ∈ R3

}
(2.109)

The set se(3) is called the tangent space of the matrix group SE(3).

We may also define two operators ’∨’ and ’∧’ to convert between a twist ξ̂ ∈ se(3)
and its twist coordinates ξ ∈ R6 as follows:(

ŵ v
~0> 0

)∨
:=

(
v
w

)
∈ R6 ,

(
v
w

)∧
:=

(
ŵ v
~0> 0

)
∈ R4×4 (2.110)
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In the twist coordinates, we may referto v as the linear velocity and to w as the
angular velocity.

The time t is typically used to index camera motion. The transform g(t) ∈ SE(3)
denotes the relative displacement between some fixed world frame W and the
camera frame at time t.

By default, we assume g(0) = I, i.e. at time t = 0 the camera frame coincides with
W .

So, if the coordinates of a point p relative to W are X0 := X(0), its coordinates
relative to the camera at time t are

X(t) = R(t)X0 + T (t) (2.111)

or in homogeneous representation

X(t) = g(t)X0 (2.112)

When the starting time is not t = 0, the relative motion between the camera at
times t1 and t2 will be denoted by g(t1, t2) ∈ SE(3). We have then the following
relation between coordinates of the same point p at different times:

X(t2) = g(t2, t1)X(t1) (2.113)

Invoking the group properties of SE(3), we have the composition rule

g(t3, t1) = g(t3, t2)g(t2, t1) (2.114)

when considering another camera frame, and also the rule of inverse

g−1(t2, t1) = g(t1, t2) (2.115)

Let us not only consider point coordinates under camera motion, but also point
velocities.

We know that the coordinates X(t) ofa point p relative to a moving camera frame
are a function of time

X(t) = g(t)X0 (2.116)

Then the velocity of p relative to the camera frame is

Ẋ(t) = ġ(t)X0 (2.117)
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Using the notion of twist, we obtain

Ẋ(t) = ġ(t)X0 = ġ(t)g−1(t)X(t) =: V̂ X(t) (2.118)

with V̂ (t) ∈ se(3). Since V̂ (t) is of the form

V̂ (t) =

(
ŵ v
~0> 0

)
(2.119)

we may also write the velocity of p relative to the camera frame in 3-D as

Ẋ(t) = ŵ(t)X(t) + v(t) (2.120)

Suppose now that the viewer is in a new coordinate frame displaced relative to a
diferent camera frame (relative to which we have coordinates X(t)) by a rigid-body
transform g∗ ∈ SE(3). Then the coordinates of the same point p relative to this
new frame are

Y (t) = g∗X(t) , i.e. X(t) = (g∗)−1 Y (t) (2.121)

We compute the velocity in the new frame:

Ẏ (t) = g∗Ẋ(t)
(2.118)

= g∗ġ(t)g−1(t)X(t) = g∗ ġ(t)g−1(t)︸ ︷︷ ︸
=ξ̂(t)

(g∗)−1 Y (t) (2.122)

Consequently, the new twist is

V̂ = g∗ξ̂(t) (g∗)−1 (2.123)

This is the same quantity as before, but observed from a different point. The two
velocities are related via a mapping defined by the relative motion g∗, the so-called
adjoint map

adg∗ : se(3) → se(3) ; ξ̂ 7→ g∗ξ̂ (g∗)−1 (2.124)

It transforms velocity from one frame to another.
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Chapter 3

Mathematical Camera Model

We consider in the following an ideal perspective camera. A popular set-up is the
pinhole camera model for image formation, of which we consider its frontal variant.

The frontal pinhole model is given by

• the optical center 0 of the camera;

• the camera frame attached to its origin 0, yielding a reference frame (X, Y, Z)
where the Z-axis is also called optical axis ;

• an image plane (x, y) given by the coordinate Z = f where f is the focal
length, i.e. it is parallel to the (X, Y ) plane and perpendicular to the optical
axis;

• the origin of principal point of the image plane is located where the optical
axis meets the image plane;

Given a point p with world coordinates ~Xw = (Xw, Yw, Zw)> on a photographed
object surface, the corresponding irradiance in the image pixel ~x = (x, y)> is found
by intersecting ~0p with the image plane.

Let us consider the coordinates of a pixel ~x = (x, y)>, i.e. more specifically x
y
f

 ∼ (
x
y

)
= ~x (3.1)

for f fixed. As we map ~x to the corresponding object point p by stretching the
ray ~0x we find

p =

 X
Y
Z

 = λ

 x
y
f

 (3.2)
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Let us point out the relations

1

f

∥∥∥∥( x
y

)∥∥∥∥ =
1

λf

∥∥∥∥( λx
λy

)∥∥∥∥ =
1

Z

∥∥∥∥( X
Y

)∥∥∥∥ (3.3)

which holds for
x

f
=

X

Z
i.e. x = f

X

Z
(3.4)

and
y

f
=

Y

Z
i.e. y = f

Y

Z
(3.5)

We may write the underlying projection as

π : R3 → R2 , ~X 7→ π
(
~X
)

= ~x (3.6)

Note that not only p but also any other point along the ray λ · ~0x projects onto
the same image point ~x = (x, y)>.

In order to establish a precise correspondence between (i) point coordinates in 3-D
space w.r.t. fixed world coordinates, and (ii) their projected points in a 2-D image
w.r.t. a local coordinate frame, one must take into account:

• coordinate transforms between camera frame and world frame;

• projection of 3-D space onto 2-D images;

• coordinate transforms between possible choices of image coordinate frames.

The inversion of a corresponding chain of mappings is sometimes called camera
calibration.

Let us get more specific.

3.1 Perspective Camera Desricption

Let us connsider a point p with world coordinates ~Xw = (Xw, Yw, Zw)>. Its coor-
dinates relative to the camera frame are in homogeneous form(

~X
1

)
= g

(
~Xw

1

)
=

(
R T
~0> 1

)(
~Xw

1

)
(3.7)

with g ∈ SE(3).
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As by (3.4), (3.5), we see that ~X is projected onto the image plane via

~x =

(
x
y

)
=

f

Z

(
X
Y

)
(3.8)

In homogeneous coordinates, this can be formulated via the intermediate step x
y
1

 =
f

Z

 X
Y
Z/f

 =
1

Z

 f 0 0
0 f 0
0 0 1

 X
Y
Z

 (3.9)

as

Z

 x
y
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0




X
Y
Z
1

 (3.10)

Since the Z coordinate is usually assumed to be the unknown, we may write it as
λ ∈ R.

We may rewrite the latter equation as

Z~x =

 f 0 0 0
0 f 0 0
0 0 1 0

 ~X (3.11)

where ~x := ~xh = (x, y, 1)> and ~X := ~Xh = (X, Y, Z, 1)> are now in homogeneous
representation.

One can decompose the matrix in (3.11) as by f 0 0 0
0 f 0 0
0 0 1 0

 =

 f 0 0
0 f 0
0 0 1


︸ ︷︷ ︸

=:Kf

 1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

Π

(3.12)

The matrix Π is often denoted as the canonical projection matrix.

To summarize, we have the perspective projection equation

λ~x = Π ~X = Πg ~Xw (3.13)

We need now to take care of the pixel array one obtains from a digital camera.
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3.2 Intrinsic Camera Parameters

Capturing digital images with a digital camera, the origin of the ordering of pixels
(i, j) is typically in the upper left corner of the image. Also, the size of the pixels
must be considered.

Starting with the latter issue, if (x, y)> are specified in terms of metric units (e.g.
millimeters), and if (xs, ys)

> are scaled versions corresponding to pixel coordinates,
then the scaling reads as (

xs
ys

)
=

(
sx 0
0 sy

)(
x
y

)
(3.14)

As indicated, we also need to translate the prinicipal point to the upper left corner:(
x′

y′

)
=

(
x+ ox
y + oy

)
(3.15)

where (ox, oy)
> are the pixel coordinates of the principla point. In homogeneous

coordinates, the above steps give the pixel coordinates ~x′ with

~x′ =

 x′

y′

1

 =

 sx 0 ox
0 sy oy
0 0 1

 x
y
1

 (3.16)

In case the pixels are not rectangular, a more general scaling matrix(
sx sθ
0 sy

)
(3.17)

with the skew factor sθ can be employed.

Combining these developments with the projection model (3.13), we have

λ

 x′

y′

1

 =

 sx sθ ox
0 sy oy
0 0 1


︸ ︷︷ ︸

=:Ks

 f 0 0
0 f 0
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0




X
Y
Z
1

 (3.18)

Let us stress that (3.18) contains two main stages:

1. A perspective projection Π to a normalized coordinate system (as if f = 1).

2. A second stage depending on the intrinsic parameters of the camera: f , sx,
sy, sθ, and ox, oy.
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With

K := KsKf =

 fsx fsθ ox
0 fsy oy
0 0 1

 (3.19)

we may write the perspective projection equation as

λ~x = KΠ ~X = KΠg ~Xw (3.20)

Often, the 3× 4 matrix KΠg is called general projection matrix.

Let us stress that (3.20) is nonlinear. Using Π> = [π1, π2, π3], we see this by
dividing by λ, thus obtaining for the entries of ~x′

x′ =
π>1

~Xw

π>3 ~Xw

, y′ =
π>2

~Xw

π>3 ~Xw

, z′ = 1 (3.21)

The nonlinearity arises as by the division.

When the calibration matrix K is known, the calibrated coordinates ~x can be
obtained via its inverse:

λ~x = λK−1~x′ = Π ~X = Πg ~Xw (3.22)

One may interprete the latter equation as an ideal perspective camera model.

3.3 Projective Geometry of the Perspective Cam-

era

Let us point out an ambiguity in the perspective projection: Two vectors x and y
in R3 may represent the same image point as long as x = αy for some α ∈ R. We
now elaborate on useful concepts that help in avoiding confusion.

Consider the perspective projection of a straight line L living in 3-D space onto a
3-D image plane by our perspective camera.

To define L in 3-D, we specify a base point p0 and a free vector v that indicates
the direction of the line. With homogeneous coordinates

p0 : ~X0 = (X0, Y0, Z0, 1)> , v : ~V = (V1, V2, V3, 0)> (3.23)

the line L can be expressed as

~X = ~X0 + λ~V , λ ∈ R (3.24)
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Making use of the standard projection Π we obtain the image points

~x = Π ~X = Π ~X0 + λΠ~V (3.25)

Evidently, the set of all possible {~x}, understood as vectors in the camera frame
with origin ~o, spans a 2-D subspace of R3. Intersecting this subspace with the
image plane gives the image of L.

This process is not injective:

Definition 3.3.1 A preimage of a point or a line in the image plane is the set of
3-D points that give rise to an image equal to the given point or line.

The preimage of L is a plane P through ~o. Its intersection with the image plane
is the image of L.

As an alternative representation, a plane may be described by its normal vector.
This gives rise to:

Definition 3.3.2 The coimage of a point or line is defined to be the subspace in
R3 that is the orthogonal complement of its preimage.

Let us stress that image, preimage and coimage are equivalent representations.

For
~l = (a, b, c)> (3.26)

describing the coimage of L, we have for ~x being the image of a point p on L

~l>~x = 0 (3.27)

Recall that l̂ ∈ R3×3 denotes the skew symmetric matrix associated to ~l ∈ R3.
Since the column vectors of l̂ span the subspace orthogonal to ~l, they also span
the preimage of L, i.e.

P = span
(
l̂
)

(3.28)

Similarly, if ~x is the image of a point p, its coimage is the plane orthogonal to ~x
given by span (x̂).
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The relations between preimage or coimage of points or lines can be summarized
as

x̂~x = ~0︸ ︷︷ ︸
coimage of a point

and l̂~l = ~0︸ ︷︷ ︸
preimage of a plane

(3.29)

Turning to the use of homogeneous coordinates, we observe that the two vectors

(X, Y, Z, 1)> and (λX, λY, λZ, λ)> (3.30)

represent the same point in R3. Similarly, (x′, y′, z′)> represents a point (x, y, 1)>

on the 2-D image plane as long as

x · z′ = x′ and y · z′ = y′ (3.31)

Let us tackle the question what happens if the last entry in homogeneous coordi-
nates is zero. To this end we define:

Definition 3.3.3 An n-dimensional projective space Pn is the set of all 1-dimensional
subspaces of the vector space Rn+1. A point in Pn can then be assigned homoge-
neous coordinates ~X = (x1, x2, . . . , xn+1)> where at least one entry is nonzero. For

any λ 6= 0 the coordinates ~Y = (λx1, λx2, . . . , λxn+1)> represent the same point p
in Pn:

~X ∼ ~Y (3.32)

Consequently, Rn with its homogeneous representation is the subset of Pn that
excludes ~X = (x1, x2, . . . , xn, 0)>. In addition, we may always normalize vecX to
xn+1 = 1.

Recalling the perspective camera model

λ~x′ = KΠg ~Xw (3.33)

with the general projection matrix π := KΠg ∈ R4×4, then the camera model is a
projection from a 3-D projective space P3 to a 2-D projective space P2:

π : P3 → P2 ; ~Xw 7→ ~x′ ∼ π ~Xw (3.34)

where we can omit λ now by use of the equivalence in the homogeneous case.

Let us now consider ~X = (x, y, z, ε)> with ε ↓ 0.
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If we would normalize for small ε to 1 in the last entry, we would get

~X =
(x
ε
,
y

ε
,
z

ε
, 1
)>

(3.35)

so that we describe a point with 3-D coordinates ~X =
(
x
ε
, y
ε
, z
ε

)>
which is far away

from the origin. Letting ε drop to zero, we interprete a point ~X = (x, y, z, 0)> as
infinitely far away from the origin.

All such points form a plane at infinity called P∞, described by

(0, 0, 0, 1)> ~X = 0 (3.36)

The model (3.34) is then well-defined on P3 including points at infinity.

A classical application of projective geometry is the computation of vanishing
points which we will briefly describe.

Two parallel lines do not intersect in 3-D. Let us make use of the homogeneous
free vector

~V = (V1, V2, V3, 0)> (3.37)

indicating the direction of two parallel lines L1, L2. As two base points that lines
let us fix

~Xa = (Xa, Ya, Za, 1)> and ~Xb = (Xb, Yb, Zb, 1)> (3.38)

respectively. The homogeneous coordinates of points on L1, L2 can be written as

~X1 (η) = ~Xa + η~V and ~Xx (η) = ~Xb + η~V (3.39)

for η ∈ R. Letting η →∞ in ~X1 and ~X2 shows that asymptotically

~X1 (∞) = ~X2 (∞) = ~V (3.40)

Thus, the two lines intersect at infinity at the point ~V . The image of the intersec-
tions is given by

~x′ = Π~V (3.41)

which is exactly the vanishing point.

Practically, one may look for the images of ~X1 and ~X2 for η → ∞. Then the
vanishing point can easily be computed.
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Chapter 4

Geometry of Two Views

In this chapter we discuss the basic set-up of stereo vision.

To this end, we assume that the two cameras used for acquiring a static scene
are calibrated. We recall, that the calibration matrix K in the general projection
matrix KΠg is known in this case, and that the calibrated coordinates ~x are

λ~x = Π ~X = Πg ~Xw (4.1)

4.1 Epipolar Geometry

We assume that we associate with each of the two cameras an orthonormal camera
frame.

We denote their optical centers by ~o1, ~o2 (usually given in world coordinates) and
align their Z-axes with their optical axes.

For simplicity we assume that the world frame is identical to the camera frame
corresponding to ~o1.

If ~X1 and ~X2 are the coordinates of a point p in the two camera frames, then they
relate as

~X2 = R ~X1 + T (4.2)

We now turn to the two images acquired by the two cameras. We are interested
in the projection of one and the same point p onto the two image planes, and we
consider homogeneous coordinates ~x1 and ~x2 of p.

Our goal is to build a direct relationship between ~x1 and ~x2. We have

~Xi = λi~xi , i = 1, 2 (4.3)
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which implies by (4.2) that there are λi with

λ2~x2 = Rλ1~x1 + T (4.4)

Now we simplify this expression. In a first step we want to get eliminate T . This
is done by multiplication from the left with T̂ , compare (1.29):

λ2T̂ ~x2 = λ1T̂R~x1 + T̂ T︸︷︷︸
=T×T=~0

(4.5)

Taking into account
T̂ ~x2 = T × ~x2 ⊥ ~x2 (4.6)

we obtain after multiplying (4.5) from the left with ~x>2

λ1~x
>
2 T̂R~x1 = λ2 ~x>2 T̂ ~x2︸ ︷︷ ︸

=〈~x2,T̂ ~x2〉=0

= 0 (4.7)

Since λ1 6= 0 we have shown:

Theorem 4.1.1 Consider two images ~x1, ~x2 of one and the same point p. Then
the epipolar constraint or essential constraint

〈~x2, T̂R~x1〉 = 0 (4.8)

holds, where R ∈ SO(3) and T ∈ R3 are the relative orientation and the relative
position of the cameras.

The matrix T̂R is said to encode the relative pose between the two cameras.

Definition 4.1.1 The matrix
E := T̂R (4.9)

is called essential matrix.

The epipolar constraint can also be derived using geometric considerations.

Since ~o1, ~o2 and p define a triangle in a plane, also the following vectors are in this
plane:

• ~x1, pointing from ~o1 to p;
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• ~x2, pointing from ~o2 to p;

• T := ~o2o1, defining a direction that connexts the origins of the two camera
frames.

Since ~X2 = R ~X1 + T , it obviously holds

R~x1 ‖ ~x2 (4.10)

i.e. the orientations are identical, they are only distinguished by a translation T
and are a member of the same plane. As a remark, we must have by the latter
equation

〈~x2, R~x1〉 6= 0 (4.11)

As T ∈ R3 is (a free vector defining an orientation) in the same plane as ~x2 and
R~x1, we can apply the cross product to obtain

〈~x2, T ×R~x1〉 = 〈~x2, T̂R~x1〉 = 0 (4.12)

which is exactly (4.8).

Let us define some other important geometric entities.

Definition 4.1.2 In the epipolar geometry we have:

• The plane defined by (~o1, ~o2, p) is called epipolar plane: For a fixed camera
configuration, there is one epipolar plane for each point p.

• The projection ~ek of a camera center ~ol onto the corresponding image plane
of the other camera ~ok is called an epipole.

• The intersection of the epipolar plane (~o1, ~o2, p) with the image plane belong-

ing to ~ok is a line ~lk called the epipolar line of p.

We will ususally use the normal vector ~lk to the epipolar plane to represent the
epipolar line. This means, the vector ~lk will be the coimage of the epipolar line.

Let us remark, that one needs to take care of the different coordinate systems
in which the described geometric entities are given. For instance, the epipole ~e1

denoting the projection of ~o2 onto the first image plane is given in the first camera
frame. In contrast, ~e2 is given in the local coordinates of the second camera frame.
Analogous assertions hold for ~l1 and ~l2.
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The epipoles and the epipolar line have some interesting properties upon which
we now elaborate.

First we consider the two epipoles ~ei ∈ R3 and their relation to the essential matrix
E.

For what follows it is useful to clarify the meaning of the translation T . The vector
T is ~o2o1 in terms of the camera frame associated with ~o2, and one interprete the
free vector T as originating at ~o2.

We recall that the meaning of ~X2 = R ~X1 + T is that of a coordinate transform,
thus we may ask for ~X1 that gives us ~X2 = ~o2 = (0, 0, 0)> (in terms of the second
coordinate frame), i.e.

~0 = R ~X1 + T (4.13)

This yields
R ~X1 = −T ⇔ ~X1 = −R>T (4.14)

Because the sought vector ~X1 is a scalar multiple of the epipole vector ~e1 (where
both are given in terms of the first coordinate frame) – this is obvious as ~e1 points
from ~o1 to ~o2, meeting a corresponding point on the first image plane – we may
just write

~e1 ∼ R>T (4.15)

By (4.15) we can compute

E~e1 = T̂R~e1 ∼ T̂ RR>︸ ︷︷ ︸
=I

T = T̂ T = ~0 (4.16)

which will be our first result of interest.

Because of the abovementioned interpretation of T we may write immediately

~e2 ∼ T (4.17)

as these are both originating in ~o2 and are given in terms of the second camera
frame. Thus follows our second result of interest

~e>2 E = ~e>2 T̂R ∼ T>T̂R =
(
−T̂ T

)>
R = −~0>R = ~0> (4.18)

Let us summarize our computations.

Theorem 4.1.2 The epipoles ~ei ∈ R3 are the left and right kernels of E, respec-
tively.
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We now focus on the epipolar lines.

We remember that for all the points in the epipolar plane holds by ~X2 = R ~X1 +T

λ2~x2 = λ1R~x1 + T (4.19)

for some λi ∈ R which gives

λ2T̂ ~x2 = λ1T̂R~x1 + T̂ T︸︷︷︸
=~0

(4.20)

Focusing on the right hand side of (4.20) we have

T̂R~x1 ∼ E~x1 (4.21)

On the left hand side of (4.20) we obtain

T̂ ~x2 = T × ~x2 ∼ ~l2 (4.22)

since T and ~x2 both hit the epipolar line and are in the epipolar plane: Therefore
the cross product gives a vector perpendicular to the epipolar plane, and the
definition of ~l2 meets exactly this requirement.

Similarly, we have by ~X2 = R ~X1 + T

λ2R
>T̂>~x2 = λ1R

>T̂>R~x1 +R> T̂>T︸︷︷︸
=−T̂ T=~0

(4.23)

For the remaining term on the right hand side holds

λ1R
>T̂>R~x1 ∼ R>T̂R~x1 (4.24)

where R and R> are rotations in the epipolar plane:

• R~x1 ∼ ~v1 where ~v1 points to a location on the epipolar line ~l1;

• T̂~v1 ∼ ~v2 gives a vector perpendicular to the epipolar line ~l1 (so that ∼ ~l1 if

understanding ~l1 as the coimage of the epipolar line);

• R>~v2 ‖ ~v2 since R> is a rotation in the epipolar plane i.e. it does not change
the orientation of ~v2.

By the above construction follows

R>T̂>~x2 ∼ ~l1 ⇔ E>~x2 ∼ ~l1 (4.25)

Let us summarize:
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Theorem 4.1.3 The coimages ~l1, ~l2 of the epipolar lines can be expressed as

~l2 ∼ E~x1 and ~l1 ∼ E>~x2 (4.26)

Moreover, in the epipolar geometry the following properties are obvious:

Proposition 4.1.1 In each image, both the image point and the epipole lie on the
epipolar line, i.e.

〈~li, ~ei〉 = 0 and 〈~li, ~xi〉 = 0 (4.27)

for i = 1, 2.

4.2 The Essential Matrix

In this paragraph we consider basic properties of the essential matrix.

An useful tool will be the singular value decomposition (SVD) which we now
briefly review.

Theorem 4.2.1 If M ∈ Rm×n then there exist orthogonal matrices U = [u1, . . . , um] ∈
Rm×m and V = [v1, . . . , vn] ∈ Rn×n such that

U>MV = Σ = diag(σ1, . . . , σp) (4.28)

with
σ1 ≥ . . . ≥ σp ≥ 0, p = min(m,n) (4.29)

The decomposition (4.28), (4.29), is called SVD of M .

The numbers σi are the singular values of M , the set {σ1, . . . , σp} is called the
singular value spectrum.

A fundamental property of the SVD is as follows. If

σ1 ≥ . . . ≥ σr > σr+1 = . . . = σp = 0 (4.30)

then rank(M) = r, and as by

U>MV = Σ ⇔ M = UΣV > (4.31)

we can represent M as by the SVD expansion

M =
r∑
i=1

σiuiv
>
i (4.32)

The latter gives the basis for the following assertion:
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Theorem 4.2.2 [Eckart-Young-Mirsky matrix approximation theorem] Let the
SVD of M ∈ Rm×n be given by

M =
r∑
i=1

σiuiv
>
i (4.33)

with r = rank(M). If k < r and

Mk :=
k∑
i=1

σiuiv
>
i (4.34)

then
min

N∈Rm×n

rank(N)=k

‖M −N‖2 = ‖M −Mk‖2 = σk+1 (4.35)

and

min
N∈Rm×n

rank(N)=k

‖M −N‖F = ‖M −Mk‖F =

√√√√ p∑
i=k+1

σ2
i , p = min(m,n) (4.36)

The 2-norm of a matrix is defined via

‖A‖2 := sup
‖~x‖2=1

‖A~x‖2 (4.37)

which can be interpreted as the maximal stretching factor of the mapping f(~) =
A~x, ~x ∈ Rn.

The Frobenius-norm ‖.‖F has no geometric interpretation, but it is easier to com-
pute than the 2-norm of a matrix:

‖A‖F :=

√∑
i,j

(aij)
2, (4.38)

Moreover, an there is an inclusion property

‖A‖2 ≤ ‖A‖F ≤
√
p‖A‖2 , p = min(m,n) (4.39)

by which one can infer from ‖A‖F on the range of ‖A‖2.

Put into simple words, the above theorem states that the minimal distance between
a given matrix M and a matrix of lower rank N with rank(N) = k, is computable
by the (k + 1)-th singular value.
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In addition to the SVD, we will make use of a rotation matrix RZ(θ) describing a
rotation about the Z-axis by an angle of θ radians.

The latter matrix is conveniently written by using exponential coordinates as

RZ(θ) = eŵθ (4.40)

with ~w = (0, 0, 1)> = ~e3. Then

RZ

(
+
π

2

)
=

 0 −1 0
1 0 0
0 0 1

 (4.41)

For a given rotation matrix R ∈ SO(3) and a translation T ∈ R3, the essential
matrix E is determined by E = T̂R. We will now follow the inverse route: Given
a matrix E, can we see if it is essential, and what are R and T?

Theorem 4.2.3 A nonzero matrix E ∈ R3×3 is an essential matrix if and only if
E has a SVD of the form E = UΣ>V > with

Σ = diag(σ, σ, 0) (4.42)

for some σ > 0 and U, V ∈ SO(3).

Let us comment on the proof on sufficiency, since it includes a constructive step.

If a given matrix E ∈ R3×3 has a non-standard SVD – i.e. U, V with E = UΣ>V >

are not only orthogonal, but in SO(3) – where Σ = diag(σ, σ, 0), let us define
(R1, T1) and (R2, T2) in SE(3) to be{

R1 := UR>Z (+π
2
)V >, T̂1 := URZ(+π

2
)ΣU>

R2 := UR>Z (−π
2
)V >, T̂2 := URZ(−π

2
)ΣU>

(4.43)

One can validate that T̂k as defined above are skew symmetric matrices fitting the
hat notation.

We can confirm by a simple computation

T̂1R1 = UΣ>V > = T̂2R2 (4.44)

Thus, E = T̂1R1 = T̂2R2 is an essential matrix.

The SVD has been used to construct two possible pairs of (R, T ) for a given
essential matrix E. Are these all possibilities?

We prepare the answer to this question by stating first the following
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Lemma 4.2.1 Consider an arbitrary nonzero skew symmetric matrix T̂ ∈ so(3)
for T ∈ R3. If for R ∈ SO(3), T̂R is again a skew symmetric matrix, it follows
R = I or R = ev̂π, where ~v = T/‖T‖.

Proof. For proving the above lemma, let us assume that T (and later ~v) is of unit
length. Since T̂R shall be skew symmetric, it shall hold(

T̂R
)>

= −T̂R (4.45)

This equation gives
T̂ = RT̂R (4.46)

Since R is a rotation matrix we can write it as

R = eŵθ (4.47)

with some vector ~w ∈ R3, ‖~w‖ = 1, performing as rotation axis, and with some
rotation angle θ.

For θ = 0, we have R = I.

For θ 6= 0, we put (4.47) into (4.46) and apply the mappings at ~w to obtain

eŵθT̂ eŵθ ~w = T̂ ~w (4.48)

Since eŵθ = ~w for all θ, because eŵθ rotates about ~w, it follows

eŵθT̂ ~w = T̂ ~w (4.49)

We have that ~w is exactly the only eigenvector of eŵθ with eigenvalue 1. Also,
T̂ ~w = T × ~w must be orthogonal to ~w, so that eŵθT̂ ~w describes the rotation of the
vector T̂ ~w ⊥ ~w about the axis ~w.

The result can only meet (4.49) if θ describes a full rotation (so that R = I), or if
T̂ ~w = ~0.

The condition T̂ ~w = ~0 implies ~w = ±T . Thus it follows

e±T̂ θT̂ e±T̂ θ = T̂ (4.50)

By the geometrical interpretations of T̂ and e±T̂ θ it is obvious that

T̂ e±T̂ θ = e±T̂ θT̂ (4.51)

59



such that (4.50) rewrites to

e±2T̂ θT̂ = T̂ (4.52)

Since this implies that e±2T̂ θ describes a full rotation about T , it follows θ = π.

We are now ready to show

Theorem 4.2.4 There exist only two relative poses (R, T ), R ∈ SO(3), T ∈ R,
corresponding to a nonzero essential matrix. These poses are given by (4.43).

Proof. Assume that (R1, T1) ∈ SE(3) and (R2, T2) ∈ SE(3) are both solutions of
T̂R = E. Then it holds

T̂1R1 = T̂2R2 (4.53)

yielding
T̂2 = T̂1R1R

>
2 (4.54)

Since T̂1 and T̂2 are both skew symmetric and R := R1R
>
2 is a rotation matrix, we

can apply the preceeding lemma.
We obtain that either R = I, i.e.

R1R
>
2 = I ⇔ R1 = R2 (4.55)

and consequently also T1 = T2, or

R1R
>
2 = eT̂1π (4.56)

i.e.
R1 = R2e

T̂1π (4.57)

This equality implies

R2 = eT̂1πR1 = R1e
T̂1π (4.58)

and because of T̂1R1 = T̂2R2 follows

T̂2e
T̂1πR1 = T̂1R1

⇔ T̂2e
T̂1π = T̂1

⇔ T̂2 = T̂1e
T̂1π (4.59)

so that
T̂2 = −T̂1 ⇔ T̂1 = −T̂2 (4.60)

by the geometric interpretation of T̂1e
T̂1π~a = T1 × eT̂1π~a for ~a ∈ R3.
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In summary we have

(R2, T2) = (R1e
T̂1π,−T1) (4.61)

so that there are only two poses as in (4.43).

Let us now come back to the epipolar constraint.

Having two possible poses at hand, let us also point out, that by the epipolar
constraint

〈~x2, T̂R~x1〉 = 0 (4.62)

as in (4.8), not only T̂R but also−T̂R is essential (assuming also that we normalise,
else there is a more general scaling factor). This means, we have in fact two
essential matrices ±E, each of them leading to two possible poses.

For E = T̂R the entries can be written as

E = [E1, E2, E3] =

 e11 e12 e13

e21 e22 e23

e31 e32 e33

 ∈ R3×3 (4.63)

Stacking them columnwise into a vector Es ∈ R9, the stacked version of E, reads
as

Es :=
[
E>1 , E

>
2 , E

>
3

]
= (e11, e12, e13, e21, e22, e23, e31, e32, e33)> (4.64)

The inverse operation, building the matrix E from Es is called unstacking.

We will make use of the Kronecker product ⊗ of the two vectors ~x1 = (x1, y1, z1)>

and ~x2 = (x2, y2, z2)>. We set

~a := ~x1 ⊗ ~x2 (4.65)

where the Kronecker product of vectors is a special case of the Kronecker product
of matrices:

Definition 4.2.1 Given two matrices A, B with A ∈ Rm×n and B ∈ Rk×l, their
Kronecker product A⊗B is the new matrix

A⊗B :=


a11B a12B · · · a1nB

...
. . . . . .

...

am1B a12B · · · amnB

 ∈ Rmk×nl (4.66)
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Thus for vectors A and B with n = l = 1, the product A ⊗ B is also a vector in
Rmk.

As by (4.66) we compute

~a = ~x1 ⊗ ~x2 = (x1x2, x1y2, x1z2, x2x2, x2y2, x2z2, x3x2, x3y2, x3z2)> ∈ R9 (4.67)

It is easy to validate then that we can reformulate the epipolar constraint 〈~x2, E~x1〉 =
~x>2 E~x1 = 0 as

~aEs = 0 (4.68)

Let us note that this formulation emphasizes the linear dependence of the epipolar
constraint on the entries of E.

We now consider a set of corresponding image points (~xi1, ~x
i
2), i = 1, . . . , k, and we

define a matrix M ∈ Rk×9 associated with this set:

M :=
[
~a1,~a2, . . . ,~ak

]>
(4.69)

where the i-th row ~ai is given as by

~ai := ~xi1 ⊗ ~xi2 (4.70)

Ideally, by (4.68) the vector Es shall satisfy

MEs = ~0 (4.71)

In order to obtain E by input correspondences (~xi1, ~x
i
2), we thus may solve (4.71)

for the vector Es.

Considering the solution of a homogeneous linear system

A~x = ~0 , A ∈ Rm×n for M > n, ~x ∈ Rn, ~0 ∈ Rm (4.72)

the solution is trivial (i.e. ~x = ~0) if rank(A) = n. In order to have a unique but
non-trivial solution – meaning, up to a scalar factor, since the solution of A~x = ~0
have a subspace structure – it must hold that rank(A) = n− 1.

Applying these theoretical considerations at (4.71), we see that we must have

rank(M) = 8 and k ≥ 8 (4.73)

Since in reality correspondences will be not perfectly arranged as e.g. due to noise,
we need to consider how we might deal with deviations from these exact require-
ments.
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4.3 The Algorithm of Longuet and Higgins

Let us consider again

MEs = ~0 , M ∈ Rk×9 , Es ∈ R9 (4.74)

for computing the essential matrix E.

In general, the number k of measurements that we have at hand will be relatively
large. Thus, the k equations in (4.74) will be contradictore to each other, i.e. the
system will be overdetermined.

A possible approach to deal with this issue is to minimise the overall error in
(4.74), i.e.

‖MEs −~0‖2 = ‖MEs‖2 (4.75)

We tackle this least squares (LS) problem as follows. Minimising (4.75) means to
look for the non-trivial minimiser of

〈M~x,M~x〉 = (M~x)> (M~x) = ~x>M>M~x (4.76)

The matrix M>M ∈ R9×9 is in our problem setting of full rank and it is symmetric.
This means, it has a complete set of orthonormal eigenvectors {~vI} spanning the
R9.
This means, we can express ~x via the eigenvectors ~vi

~x = α1~v1 + . . .+ α9~v9 (4.77)

Then with corresponding eigenvalues λi > 0 it holds

~x>M>M~x = (α1~v1 + . . .+ α9~v9)>M>M (α1~v1 + . . .+ α9~v9)(4.78)

= (α1~v1 + . . .+ α9~v9)> (α1λ1~v1 + . . .+ α9λ9~v9)
~vi orthonormal

= λ1α
2
1 + . . .+ λ9α

2
9

> min
i
λi
(
α2

1 + . . .+ α2
9

)
Assuming that Es is of unit length it holds

α2
1 + . . .+ α2

9 = 1 (4.79)

Therefore, the minimiser we are looking for is given by the eigenvector ~v of the
smallest eigenvalue λ := mini λi of M>M .

In practice, this is done by computing the SVD of M :

M = UΣV > (4.80)
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Then

M>M =
(
UΣV >

)>
UΣV > (4.81)

= V Σ> U>U︸ ︷︷ ︸
=I

ΣV >

= V Σ>Σ︸︷︷︸
=diag(σ2

1 ,...,σ
2
9)∈R9×9

V >

where the matrix V contains the eigenvectors of M>M , which can easily be seen by
comparing (4.81) with the principal axis transform of M>M , i.e. M>M = WDW>

wher W contains the orthonormal eigenvectors and D is a diagonal matrix with
the eigenvalues.

As by σi ≥ σi+1 we are interested in λ = σ2
9, and the sought eigenvector is identical

to the 9th column of V computed by the SVD of M .

Theorem 4.3.1 Given F ∈ R3×3 with a SVD equal to F = Udiag(λ1, λ2, λ3)V >,
with U, V ∈ SO(3) and λ1 ≥ λ2 ≥ λ3, then the essential matrix E that minimises
‖E − f‖2

F is given by E = Udiag(σ, σ, 0)V > with σ = (λ1 + λ2)/2.

Proof. By the Eckart-Young-Mirsky Theorem it holds

‖E − f‖2
F = (λ1 − σ)2 + (λ2 − σ)2 + (λ3 − 0)2 (4.82)

The minimiser is given by
∂

∂σ
‖E − f‖2

F
!

= 0 (4.83)

We make this condition precise computing the derivative using (4.82):

2 (λ1 − σ) (−1) + 2 (λ2 − σ) (−1) = 0

⇔ λ1 + λ2 − 2σ = 0

⇔ σ =
λ1 + λ2

2
(4.84)

The above operation is often called projection onto the essential space.

As we can observe by the epipolar constraint

〈~x2, E~x1〉 = 0 (4.85)

the essential matirx E is defined only up to a nonzero scalar factor.

64



One possible way to deal with this problem is to normalise E, setting ‖E‖ = 1.
Alternatively, instead of computing σ as recommended in Theorem 4.3.1 one may
set that diagonal matrix to diag(1, 1, 0).

Note, that by E = T̂R where R ∈ SO(3), a normalisation ‖E‖ = 1 is equivalent
to assuming a unit translation ‖T‖ = 1.

Let us now comment on the use of the SVD in determining E. We have used for
both E and F in the above theorem aSVD of structure Udiag(.)V > with U , V in
SO(3). However, a standard SVD algorithm will use orthogonal matrices U and
V with det = ±1, but not U , V in SO(3). On the other hand, ‖E‖ = 1 holds for
both ±E.

There is actually no problem: It is easy to see that one of the matrices ±E has
has a SVD with U , V in SO(3). We just do not know in advance so that both ±E
need to be checked.

We now describe and comment on the Algorithm of Longuet and Higgins from
1981.

Algorithm 4.3.1 For a given set of corespondences (~xi1, ~x
i
2), i = 1, . . . , k and

k ≥ 8, this algorithm computes (R, t) ∈ SE(3) satisfying for all pairs (~xi1, ~x
i
2) the

epipolar constraint in a LS sense.

Step 1: Compute first approximation of E

Compute the SVD of M as M = UΣV > and find F s by taking the 9th column of
V , then normalise ‖F s‖ = 1.

Step 2: Projection onto essential space

Compute SVD of F and determine E as by Theorem 4.3.1.

Step 3: Compute four solutions (R, T )

This is done by using the determined U and V , and ±E in (4.43).

The question remains, how one can distinguish the true solution from the other
three.

The answer is to consider the positive depth constraint. The equation

λ2~x2 = λ1R~x1 + T (4.86)

will yield for three out of four solutions at least one λi < 0. The corresponding
pairs (R, T ) can be discarded.
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4.4 Structure Reconstruction

The Longuet-Higgins (LH) algorithm returns the relative pose (R, T ) between two
cameras up to an arbitrary scale γ ∈ R+. This plus the requirement γ > 0 can
easily be seen by considering that we identified the correct sign of E, and by the
normalisation step ‖F s‖ = 1.

Employing ‖E‖ = 1, this implies a translation of unit length, since E = T̂R and
R ∈ SO(3) does not change the norm of a vector: ‖R~x‖ = ‖~x‖.

Let us consider the basic rigid-body transform

λi2~x
i
2 = λi1R~x

i
1 + γT , i = 1, . . . , k (4.87)

Since (R, T ) are known, the k equations in (4.87) are linear in λi1, λi2 and the scale
γ.

Let us refine the set of constituting equations (4.87).

For each point ~xj, λj is the depth of the 3-D object. Since λ1~x1 and λ2~x2 denote
the same 3-D point, one value λ is redundant. Thus, we eliminate λ2 from (4.87)
by multiplying with x̂i2:

λi1x̂
i
2R~x

i
1 + γx̂i2T = ~0 , i = 1, . . . , k (4.88)

This is equivalent to solving for all indices i

M iλ̃i :=
[
x̂i2R~x

i
1, x̂

i
2T
]( λi1

γ

)
= ~0 (4.89)

where we have in detail

M i = [ x̂i2R~x
i
1︸ ︷︷ ︸

=:~mi
1∈R3

, x̂i2T︸︷︷︸
=:~mi

2∈R3

] ∈ R3×2 (4.90)

and

λ̃i =

(
λi1
γ

)
∈ R2 (4.91)

In order to have up to a scaling a unique solution of (4.89), M i needs to have a
rank of 1.

Concerning the latter requirement, let us note that, as

~xi2 ‖ R~xi1 (4.92)
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because it holds ~xi2 ∼ R~xi1 up to a translation T by (4.87), we have

x̂i2R~x
i
1 = ~0 (4.93)

so that ~mi
1 = ~0. Then M i is of rank 1 if and only if ~mi

2 6= ~0. The case

~mi
2 = x̂i2T = ~0 (4.94)

happens when the point pi (with image coordinates ~xi1, ~xi2) is on the base line
connecting ~o1 and ~o2.

Let us note that all the n equations (4.89) share the same γ.

We summarise our equations by defining

~λ :=
(
λ1

1, λ
2
1, . . . , λ

k
1, γ
)>

(4.95)

and a matrix

M :=


x̂1

2R~x
1
1 0 · · · 0 x̂1

2T
0 x̂2

2R~x
2
1 0 0 x̂2

2T
. . . . . . . . .

...
...

... 0
...

0 · · · 0 x̂k2R~x
k
1 x̂k2T

 ∈ R(3n)×(n+1) (4.96)

Then the equation
M~λ := ~0 (4.97)

determines all unknown depths up to a single universal scale.

This scale ambiguity is natural, as one cannot distinguish a setting with a reference
translation T from another one, where ones has a combination of a translation T ′

twice as large as T and a scene twice as large but two times further away.

The LS solution ~λ of (4.97) is the eigenvector of M>M corresponding to the
smallest eigenvalue, compare our previous proceedings.

4.5 Optimal Pose Recovery

The LH algorithm as well as the developed theory assumes that exact point cor-
respondences, image coordinates etc. are given.

There are some problems:
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• We performed a projection of the computed matrix F onto essential space.
This is just an approximation.

• The estimated pose may not be close to the true solution.

• For image coordinates ~x1, ~x2 taken from a discrete pixel grid, the correspond-
ing lines do not meet in some point p.

We model these issues as follows. The image coordinates ~x1, ~x2 that are of the for-
mat (x, y, 1)> are idealisations that are given in practice via perturbed coordinates

x̃i1 = ~xi1 + δ~xi1 , x̃i2 = ~xi2 + δ~xi2 (4.98)

where
δ~xij =

(
δ~xij,1, δ~x

i
j,2

)>
(4.99)

The measured coordinates (x̃i1, x̃
i
2) do in general not satisfy the epipolar con-

straints, i.e.
〈x̃i2, T̂Rx̃i1〉 6= 0 (4.100)

The aim is now to minimise the difference between the ideal model ~x and the data
x̃ in terms of parameters (~x, T,R).

There is an artistic freedom in the means how to measure that difference and how
to realise the minimisation.

Let us simply assume that δ~xij are unknown errors and that we aim to minimise
them in a LS sense, via minimising the objective function

φ(~x, T,R) =
k∑
i=1

(
‖δvi1‖2 + ‖δvi2‖2

)
:=

k∑
i=1

(
‖x̃i1 − ~xi1‖2 + ‖x̃i2 − ~xi2‖2

)
(4.101)

Since (~xi1, ~x
i
2) are the recovered 3-D points pi projected back onto the image planes,

minimising (4.101) means to minimise the reprojection error.

The above problem formulation is not completely concise, since the sought coor-
dinates (~xi1, ~x

i
2) shall satisfy the epipolar constraints

〈~xi2, T̂R~xi1〉 = 0 (4.102)

Therefore, the complete minimisation task is a constrained optimisation problem:

min! φ(~x, T,R) =
∑k

i=1

∑2
j=1 ‖x̃ij − ~xij‖2

subject, for i = 1, . . . , k, to

〈~xi2, T̂R~xi1〉 = 0
〈~xi1, e3〉 = 1
〈~xi2, e3〉 = 1

(4.103)
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where e3 = (0, 0, 1)>.

If (R, T ) are considered to be estimated in an optimal way, we can find a pair
(~x∗1, ~x

∗
2) satisfying 〈~x∗2, T̂R~x∗1〉 = 0 and minimising the reprojection error

φ(~x) = ‖x̃1 − ~x1‖2 + ‖x̃2 − ~x2‖2 (4.104)

This is called the triangulation problem.

The value of φ depends in the latter only on the position of the epipolar plane,
which may rotate around the baseline (~o1, ~o2). To parameterise the position of the
epipolar plane P , let (~e2, ~n1, ~n2) (with ~e2 being the epipole) be an orthonormal

basis in the second camera frame. Then P is determined by its normal vector ~l2,
which is in turn determined by the angle θ between ~l2 and ~n1. The minimisation
can be carried out with respect to θ.
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Chapter 5

Optimisation for Pose and
Structure

The objective of this chapter is to discuss in some detail how to approach the
optimisation of the reprojection error under epipolar constraints.

Corresponding techniques can be applied in various ways in computer vision.

5.1 Lagrange Multiplier

We consider the optimisation problem subject to equality constraints{
x∗ = min f(x)
subject to h(x) = 0

(5.1)

where, in general, x ∈ Rn, f : Rn → R and

h : Rn → Rm, x 7→ (h1, . . . , hm)>(x) (5.2)

For each constraint hj(x) = 0 to be effective at the minimiser x∗, one often assumes
that the gradients

∇h1(x∗), . . . ,∇hm(x∗) ∈ Rn (5.3)

are linearly independent. Such constraints are called regular.

The basic idea that we will follow now is to build a new objective function that
includes the constraints in such a way, that the minimisation of the new function
solves the problem (5.1).

To this end, let us define the Lagrangian function L : Rn+m → R as

L(x, λ) := f(x) + λ>h(x) (5.4)
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where we have introduced the vector of Lagrange multipliers

λ := (λ1, . . . , λm)> ∈ Rm (5.5)

The necessary conditions for a minimum of the function L are that the first-order
derivatives are zero, i.e.

∂L

∂xi
= 0 and

∂L

∂λj
= 0 (5.6)

Especially, carrying out the differentiation w.r.t. the Lagrange multipliers, we ob-
tain

∂L

∂λj
=

∂

∂λj

(
f + λ>h

)
= hj = 0 (5.7)

i.e. the minimiser (x∗, λ∗) of L satisfies necessarily the equality constraints of (5.1).

For sufficient conditions to have a minimum (x∗, λ∗), the Hessian matrix H(L) that
corresponds to taking second-order derivatives should be positive semi-definite, i.e.

v>H(L)v ≥ 0 ∀v 6= 0 (5.8)

Since
∂2L

∂λk∂λl
= 0 ∀k, l (5.9)

it suffices to consider the parts corresponding to two cases : (i) second-order deriva-
tives of x-variables and (ii) a mixture of first-order derivatives in x and λ.

Let us take care of the first case. Writing

∂2L

∂x2
:=

(
∂2L(x∗, λ∗)

∂xi∂xk

)
i,k=1,...,n

(5.10)

we obtain by (5.8) the condition

v>
∂2L

∂x2
v ≥ 0 ∀v ∈ Rn, v 6= 0 (5.11)

We turn to the second case. Carrying out differentiation w.r.t. λj we obtain by
(5.7) hj(x) = 0. Another differentiation w.r.t. the i-th component of x yields

∂2L(x∗, λ∗)

∂xi∂λj
=

∂

∂xi
hj(x) (5.12)

Taking into account x ∈ Rn we will consider the gradient, in detail

∇hj(x), ∇ :=

(
∂

∂x1

, . . . ,
∂

∂xn

)>
(5.13)
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While the constraints h(x) = 0 are enforced by the necessary conditions, our
problem formulation bears no implication on ∇hj(x) for any j.

As we remember that we originally intended to look for a minimum just w.r.t. the
variables x, we solve this problem by requiring

〈∇hj(x), v〉 = 0 for j = 1, . . . ,m (5.14)

for the vectors v.

Thus, we summarise the sufficient conditions as

v>
∂2L

∂x2
v ≥ 0 ∀v : v>︸︷︷︸

∈R1×n

[∇h1, . . . ,∇hm]︸ ︷︷ ︸
∈Rn×m

= 0︸︷︷︸
∈R1×m

(5.15)

The Theorem of Lagrange combines these developments, saying that the necessary
and sufficient conditions (5.6) and (5.15) give the solution of (5.1).

A possible algorithmical approach to obtain candidates for local minima of problem
(5.1) is to solve the necessary optimality conditions (5.6). They give a system of
n+m equations in the n+m unknowns (x, λ). However, the system will only be
regular if the constraints h(x) = 0 are regular: In a local minimum it holds ideally
∇f(x) = 0 so that the ∇hj need to be linearly independent in order to obtain a
unique solution.

5.2 Optimisation Subject to Epipolar Constraints

We recall the constrained optimisation problem (4.103) of minimising the repro-
jection error under epipolar constraints:

min! φ(~x, T,R) =
∑k

i=1

∑2
j=1 ‖~xik − x̃ik‖2

subject, for i = 1, . . . , k, to

〈~xi2, T̂R~xi1〉 = 0
〈~xi1, e3〉 = 1
〈~xi2, e3〉 = 1

(5.16)

where e3 = (0, 0, 1)> and where x̃ik are measured data.

Using the technique of Lagrange multipliers, we write down the associated La-
grangian function

L(~x,R, T, λ, γ, η) (5.17)

:=
n∑
j=1

[
‖~xj1 − x̃

j
1‖2 + ‖~xj2 − x̃

j
2‖2 + λj〈~xj2, T̂Rx

j
1〉+ γj

(
〈~xj1, e3〉 − 1

)
+ ηj

(
〈~xj2, e3〉 − 1

)]
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The necessary condition for having a minimiser is ∇L = 0, where in our case (5.17)
the gradient is taken w.r.t. the variables in ~xj1, ~xj2, λj, γj and ηj.

As discussed previously, setting derivatives w.r.t. the Lagrange multipliers λj, γj

and ηj to zero gives back the epipolar constraints.

Differentiation of (5.17) w.r.t. ~xj1 (in the sense of individual entries ~xj1,k) gives

∂

∂~xj1,k
L(~x,R, T, λ, γ, η) = 2

(
~xj1 − x̃

j
1

)
+

n∑
l=1

λj~xj2,k

(
T̂R
)
l,k

+ γje3,k (5.18)

Combing the expressions for the k entries in (5.18) and setting the derivatives to
zero gives

2
(
~xj1 − x̃

j
1

)
+ λj

(
T̂R
)>

~xj2 + γje3 = ~0 (5.19)

Analogously we obtain by differentiation w.r.t. ~xj2

2
(
~xj2 − x̃

j
2

)
+ λjT̂R~xj1 + ηje3 = ~0 (5.20)

Let us focus on (5.19). Multiplication with ê3 gives

2ê3

(
~xj1 − x̃

j
1

)
+ λj ê3R

>T̂>~xj2 = ~0 (5.21)

or equivalently

ê3~x
j
1 = ê3x̃

j
1 −

1

2
λj ê3R

>T̂>~xj2 (5.22)

Another multiplication by ê>3 , where

ê>3 ê3 = diag(1, 1, 0) (5.23)

gives

~xj1 = x̃j1 −
1

2
λj ê>3 ê3R

>T̂>~xj2 (5.24)

Note that for the third component of the x-vectors, there is a 1 in homogeneous
coordinates. We can write down (5.24) in the current, simple form since it is not
important to distinguish in the equality 0 = 0 or 1 = 1 – as by multiplication with
ê>3 ê3 – in the third entry.

Analogously to the above derivation of (5.24) we obtain from (5.20) the equation

~xj2 = x̃j2 −
1

2
λj ê>3 ê3T̂R~x

j
1 (5.25)

In a next step we solve for the Lagrange multipliers λj.
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Starting from (5.24) we want to obtain scalar values λj from this equality of vectors.
To this end we again make use of the epipolar constraint we impose on our ideal
solution:

λj ê>3 ê3R
>T̂>~xj2 = 2

(
x̃j1 − ~x

j
1

)
⇔ λj

(
~xj2
)>
T̂Rê>3 ê3R

>T̂>~xj2 = 2
(
~xj2
)>
T̂Rx̃j1 − 2

(
~xj2
)>
T̂R~xj1︸ ︷︷ ︸

=0

⇔ λj〈ê3R
>T̂>~xj2, ê3R

>T̂>~xj2〉 = 2
(
~xj2
)>
T̂Rx̃j1

⇔ λj =
2
(
~xj2
)>
T̂Rx̃j1

‖ê3R>T̂>~x
j
2‖

(5.26)

Analogously we compute by (5.25):

λj ê>3 ê3T̂R~x
j
1 = 2

(
x̃j2 − ~x

j
2

)
⇔ λj

(
~xj1
)>
R>T̂>ê>3 ê3 = 2

(
x̃j2
)> − 2

(
~xj2
)>

⇔ λj
(
~xj1
)>
R>T̂>ê>3 ê3T̂R~x

j
1 = 2

(
x̃j2
)>
T̂Rx̃j1 − 2

(
~xj2
)>
T̂R~xj1︸ ︷︷ ︸

=0

⇔ λj =
2
(
x̃j2
)>
T̂R~xj1

‖ê3T̂R~x
j
1‖

(5.27)

We may now plug the expressions we found into our objective function from (5.16).

Let us focus on the contribution ‖~xj1 − x̃
j
1‖2 in φ:

‖~xj1 − x̃
j
1‖2

(5.24)
= ‖1

2
λj ê>3 ê3R

>T̂>~xj2‖2

(5.26)
= ‖

(
~xj2
)>
T̂Rx̃j1

‖ê3R>T̂>~x
j
2‖︸ ︷︷ ︸

=:α

ê>3 ê3R
>T̂>~xj2‖2

= 〈α ê>3 ê3R
>T̂>~xj2︸ ︷︷ ︸

=:~a

, αê>3 ê3R
>T̂>~xj2, 〉 (5.28)

Since α is a scalar number , we may withdraw it from the latter inner product:

〈α~a, α~a〉 = α2〈~a,~a〉 (5.29)
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Let us consider in some more detail the expression 〈~a,~a〉:

〈~a,~a〉 = 〈ê>3 ê3R
>T̂>~xj2, ê

>
3 ê3R

>T̂>~xj2〉
=

(
~xj2
)>
T̂R ê>3 ê3︸︷︷︸

=diag(1,1,0)

ê>3 ê3︸︷︷︸
=diag(1,1,0)

R>T̂>~xj2

=
(
~xj2
)>
T̂Rê>3 ê3R

>T̂>~xj2

= 〈ê3R
>T̂>~xj2, ê3R

>T̂>~xj2〉
= ‖ê3R

>T̂>~xj2‖2 (5.30)

With our definitions, we thus obtain

‖~xj1 − x̃
j
1‖2 = α2〈~a,~a〉 =

((
~xj2
)>
T̂Rx̃j1

)2

‖ê3R>T̂>~x
j
2‖4
‖ê3R

>T̂>~xj2‖2 =

((
~xj2
)>
T̂Rx̃j1

)2

‖ê3R>T̂>~x
j
2‖2

(5.31)
Analogously, we obtain

‖~x2j − x̃j2‖2 =

((
x̃j2
)>
T̂R~xj1

)2

‖ê3T̂R~x
j
1‖2

(5.32)

so that in total

φ(~x,R, T ) =
n∑
j=1


((
~xj2
)>
T̂Rx̃j1

)2

‖ê3R>T̂>~x
j
2‖2

+

((
x̃j2
)>
T̂R~xj1

)2

‖ê3T̂R~x
j
1‖2

 (5.33)

Let us stress, that the latter expression incorporates necessary optimality condi-
tions, andcan finally be minimised.

One may simplify the derived objective function by substituting x̃ for unknowns
~x. This leads to

φ(R, T ) =
n∑
j=1


((
x̃j2
)>
T̂Rx̃j1

)2

‖ê3R>T̂>x̃
j
2‖2

+

((
x̃j2
)>
T̂Rx̃j1

)2

‖ê3T̂Rx̃
j
1‖2

 (5.34)

which is to be minimised only w.r.t. the pose (R, T ).

As it turns out, one may interprete the terms in (5.33) as distances from the image
points x̃jk to corresponding epipolar lines.

The whole developments lead to an algorithm that we may sketch as follows:
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Algorithm 5.2.1 (for Optimising Pose and Structure) We describe a sim-
ple algorithm for alternating minimisation:

Step 1 Initialisation:

– Initialise ~x1 and ~x2 as x̃1 and x̃2, respectively.

– Initialise (R, T ) by the result of the Longuet-Higgings-Algorithm.

Step 2 Pose Estimation: For ~x1 and ~x2 computed from the previous step, update
(R, T ) by minimising the reprojection error φ(~x,R, T ).

Step 3 Structure Triangulation: For each image pair (x̃1, x̃2) and (R, T ) computed
in Step 2, solve for (~x1, ~x2) that minimise the reprojection error φ(~x) =
‖~x1 − x̃1‖2 + ‖~x2 − x̃2‖2.

Step 4 Return to Step 2 until the decrement in the value of φ is below a threshold.

The algorihtm above is conceptually identical to the so-called bundle adjustment :
This denotes the direct optimisation of the reprojection error w.r.t. all the un-
knowns for several input images.
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Chapter 6

Planar Homography

We now address the situation that the input data for the Longuet-Higgins-Algorithm
is not good in the sense, that the solution is not unique.

As it happens, this situation may occur if all measured points lie on certain 2-D
surfaces called critical surfaces. As 2-D planes that fall into this category are quite
common in man-made environments, we now discuss the correspondong planar
setting.

6.1 What is a Planar Homography?

Let us consider two images ~x1, ~x2 of points p on a 2-D plane P in 3-D space. We
now investigate the availbale relations between such pairs.

Writing the corresponding coordinate transform we have

~X2 = R ~X1 + T (6.1)

with ~X1, ~X2 being the coordinates of p.

The two images ~x1, ~x2 of p must satisfy the epipolar constraint

~x>2 E~x1 = ~x>2 T̂R~x1 = 0 (6.2)

If points are given on a common plane P , this will induce another constraint,
beyond the standard relations (6.1), (6.2).

Let ~N := (n1, n2, n3)> be the unit normal vector of the plane P , and let d be the
distance from the plane P to the optical center of the first camera.

Since ~X1 denotes the coordinates of some point on P , and as ~N and ~X1 are both
given in terms of the first camera frame, it holds

〈 ~N, ~X1〉 = n1X1 + n2Y1 + n3Z1 = d (6.3)
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i.e.
1

d
〈 ~N, ~X1〉 = 1 ∀ ~X1 ∈ P (6.4)

Making use of the latter in (6.1) gives

~X2 = R ~X1 + T · 1 = R ~X1 + T · 1

d
〈 ~N, ~X1〉 =

(
R +

1

d
T ~N>

)
~X1 (6.5)

The matrix

H := R +
1

d
T ~N> ∈ R3×3 (6.6)

is called the planar homography matrix.

Let us stress that H depends on the pose (R, T ) as well as on the parameters d

and ~N describing the plane P .

From
λ1~x1 = ~X1, λ2~x2 = ~X2, ~X2 = H ~X1 (6.7)

we have
λ2~x2 = Hλ1~x1 ⇒ ~x2 ∼ H~x1 (6.8)

which highlights that there is an inherent scale ambiguity. This arises due to the
open scaling parameter in 1

d
T .

Often the equation
~x2 ∼ H~x1 (6.9)

is called planar homography mapping induced by the plane P .

H introduces a mapping between points in the first and the second image in the
sense described below.

Proposition 6.1.1 Let p be a point on the plane P . Consider the points ~x1 in the
first image and ~x2 in the second image that correspond to p. The ~x2 is uniquely
determined as ~x2 ∼ H~x1: For any other point ~x′2 on the same epipolar line ~l2 ∼
E~x1, the ray λ1~x1 at a point p′ out of the plane.

Proposition 6.1.2 If ~x1 is the image of some point p′ not on P , then ~x2 ∼ H~x1 is
only a point that is on the same epipolar line ~l2 ∼ E~x1 as its actual corresponding
image ~x′2. That implies ~l>2 ~x2 = ~l>2 ~x

′
2 = 0.

We combine these assertions as:
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Theorem 6.1.1 Given a homography H induced by plane P in 3-D between two
images. For any pair of corresponding images (~x1, ~x2) of a 3-D point p that is not
necessarily on P , the associated epipolar lines are

~l2 ∼ x̂2H~x1 (6.10)

and
~l1 ∼ H>~l2 (6.11)

Proof. We will only show (6.10). If p is not on P , the equation (6.10) is true by
Proposition 6.1.2.

For points on the plane P , ~x2 = H~x1 implies x̂2H~x1 = 0. This means, the equation
(6.10) is still true.

The above properties of H allow to compute epipolar lines without knowing the es-
sential matrix E. However, for a given image point we cannot find a corresponding
point, but only a corresponding epipolar line.

As a remark, H can be computed from a small number of correspondences, and in
turn knowing it helps in establishing correspondences.
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Chapter 7

Estimating the Planar
Homography Matrix

In order to eliminate the unknown scale in

~x2 ∼ H~x1 (7.1)

we multiply both sides by x̂2 to obtain

x̂2H~x! = 0 (7.2)

This equation is called planar epipolar constraint, or planar homography constraint.

Let us point at an issue we observe by the latter constraint. Since for any vector
u ∈ R3 we have that

û~x2 = ~u× ~x2 (7.3)

is orthogonal to ~x2. By (7.1) there is also

ûH~x1 = ~u× (H~x1) ∼ ~u× ~x2 (7.4)

so that

ûH~x1 ⊥ ~x2 (7.5)

This implies

~x>2 ûH~x1 = 0 ∀u ∈ R3 (7.6)

That means, ~x>2 E~x1 = 0 for a family of matrices E = ûH besides the essential
matrix E = T̂R. This explains why the Longuet-Higgins-Algorithm does not apply
to feature points from a planar scene.
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7.1 Homography from Rotation

The homography relation ~x2 ∼ H~x1 also shows up when the camera is rotating
only, i.e. for ~X2 = R ~X1. In this case the homography matrix becomes

H = R (7.7)

since T = ~0. Consequently, the constraint

x̂2R~x1 = 0 (7.8)

arises.

One can interprete this example as follows. By the underlying relation

H = R +
1

d
T ~N> (7.9)

it must hold
1

d
T ~N> → 0 (7.10)

in order to obtain H = R. This is achieved by

lim
d→∞

[
R +

1

d
T ~N>

]
= R (7.11)

Since d denotes the distance of the plane P to the origin of the first camera frame,
one may interprete it as a special planar scene case where all points lie on a plane
infinitely far away. Thus, without translation, information about the depth of the
sceneis completely lost in the images.

7.2 Computation of the Homography Matrix

We now briefly sketch how to compute the matrix H. The procedure is analogously
to the Longuet-Higgins-Algorithm.

Proposition 7.2.1 A set of four point correspondences suffices to compute H up
to a scale factor.

The proof relies on the same construction as in the Longuet-Higgins-Algorithm
that needs eight points. We here need only four since by ~x2 ∼ H~x1 each point
correspondence gives two constraints.

Since there is a scalar factor λ involved, one has to take care of it using the
structure of H:
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Lemma 7.2.1 [Normalisation of the Planar Homography] For a matrix HL :=

λ(R + 1
d
T ~N>), we have

|λ| = σ2(HL) (7.12)

where σ2 is the second largest singular value of HL.

Let us give the key idea of the proof.

Setting ~u := 1
d
R>T ∈ R3, then

H>LHL =

(
λ(R +

1

d
T ~N>)

)>(
λ(R +

1

d
T ~N>)

)
= λ2(R> +

1

d
NT>)(R +

1

d
T ~N>)

= λ2
(
I + ~u ~N> + ~N~u> + ‖~u‖2 ~N ~N>

)
(7.13)

where we have used

1

d
NT>

1

d
T ~N> = ~N

1

d
T>R︸ ︷︷ ︸
=~u>

1

d
R>T︸ ︷︷ ︸
=~u

~N> = ‖~u‖2 ~N ~N> (7.14)

Let us observe that the vector

~u× ~N = û ~N (7.15)

is by the properties of the cross product orthogonal to both ~u and ~N . Thus from
(7.13) we obtain

H>LHL

(
û ~N
)

= λ2
(
I + ~u ~N> + ~N~u> + ‖~u‖2 ~N ~N>

)
û ~N

= λ2
(
û ~N
)

+ ~u ~N>
(
û ~N
)

︸ ︷︷ ︸
=0

+ ~N ~u>
(
û ~N
)

︸ ︷︷ ︸
=0

+‖~u‖2 ~N ~N>
(
û ~N
)

︸ ︷︷ ︸
=0

(7.16)

This means, as

H>LHL

(
û ~N
)

= λ2
(
û ~N
)

(7.17)

the vector û ~N is an eigenvector of H>LHL and |λ| is a singular value of HL. It
remains to show that it is the second largest singular value, which we skip here.

By the above lemma, we set

H := HL/σ2(HL) (7.18)
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This recovers H up to the form

H = ±
(
R +

1

d
T ~N>

)
(7.19)

To get the correct sign, we need to impose the positive depth constraint.

Similarly as with the essential matrix E, one can decompose the matrix H for
estimation of the parameters R, 1

d
T and ~N .
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Chapter 8

Reconstruction from Two
Uncalibrated Views

We recall that the projection of a point with coordinates ~X onto the image plane
has homogeneous coordinates ~x′ satisfying

λ~x′ = KΠg ~X (8.1)

where Π = [I,~0] ∈ R3×4 and where g ∈ SE(3) is the pose of the camera w.r.t. the
world frame. The invertible calibration matrix

K =

 fsx fsθ ox
0 fsy oy
0 0 1

 (8.2)

describes the intrinsic properties of the camera, such as the position of the optical
center (ox, oy), the pixel size (sx, sy), the skew factor sθ and the focal length f .

In what follows, we denote pixel coordinates with ~x′ and metric coordinates by ~x.
These satisfy the relation

~x′ = K~x ⇔ ~x = K−1~x′ (8.3)

Hence the knowledge of K is crucial for recovering the true 3-D Euclidean structure
of a scene.

Unfortunately, the matrix K is in general not known which is the situation of
uncalibrated views.

8.1 Geometric Interpretation of Uncalibrated Views

In standard Euclidean space, the canonical inner product is given as

〈~u,~v〉 = ~u>~v (8.4)
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To understand the geometry associated with an uncalibrated camera, consider an
invertible linear mapping ψ represented by our (unknown) matrix K that trans-
forms spatial coordinates as

ψ : R3 → R3, ~X 7→ ~X ′ = K ~X (8.5)

This mapping induces a transformation of the inner product:

〈K−1~u,K−1~v〉 = ~u>K−>K−1~v = 〈~u,~v〉S ∀~u,~v ∈ R3 (8.6)

where the matrix

S := K−>K−1 (8.7)

is symmetric and positive definite.

Therefore, if one wants to write the inner product between two vectors, but only
their pixel coordinates ~u,~v are available, one has to weigh the inner product as in
(8.6).

The matrix S is called the metric of the space. The distortion of the 3-D Euclidean
space induced by S alters both the length of vectors and the angles between them.

We have learned that rigid-body motions must preserve distances and angles, but
these are now expresed via the metric S. Thus, how does a rigid-body motion look
like in distorted space?

The Euclidean coordinates ~X of a moving point p at time t are given by

~X = R ~X0 + T (8.8)

where ~X0 are the initial coordinates of p. This coordinate transform is then given
in the uncalibrated camera coordinates ~X ′ by

K ~X = KR ~X0 +KT ⇔ ~X ′ = KRK−1 ~X ′0 + T ′ (8.9)

where ~X ′ = K ~X and T ′ = KT . Therefore, the mapping transforming ~X ′0 to ~X ′

can be written in homogeneous coordinates as

G′ =

{
g′ :=

(
KRK−1 T ′

~0> 1

)
: T ′ ∈ R3, R ∈ SO(3)

}
(8.10)

These transformations form a matrix group called the conjugate of the Euclidean
group G = SE(3).
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Applying the conjugate of G to the image formation model (8.1), we compute:

λ~x′ = KΠg ~X (remember K is unknown)

= KΠ
(
R ~X + T

)
(again in homogeneous coordinates)

= K
(
R ~X + T

)
(after projection!)

= KR ~X +KT

= KRK−1K ~X +KT

= KRK−1 ~X ′ + T ′ (with ~X ′ ∈ R3) (8.11)

Taking into account by (8.10) that

g′
(

~X ′

1

)
=

(
KRK−1 ~X ′ + T ′

1

)
(8.12)

we obtain from (8.11)

λ~x′ = Πg′ ~X ′ (8.13)

with ~X ′ in homogeneous coordinates and no explicit calibration matrix.

The relation (8.13) is similar to the calibrated case, but it relates uncalibrated

quantities from the distorted space ~X ′, ~x′ (here uncalibrated by interpretation)
via the conjugate motion g′.

We also observe that an uncalibrated camera moving in a calibrated space

λ~x′ = KΠg ~X (8.14)

(K is the unknown calibration!) is equivalent to a calibrated camera moving in a
distorted space, i.e.

λ~x′ = Πg′ ~X ′ (8.15)

Thereby, we recall that

• ~X are Euclidean coordinates w.r.t. an undistorted space (’calibrated space’);

• ~X ′ are uncalibrated camera coordinates;

• K is the unknown calibration.

Let us summarise these thoughts.

Proposition 8.1.1 An uncalibrated camera with calibration matrix K viewing
points in a calibrated Euclidean world moving with (R, T ) is equivalent to a cal-
ibrated camera viewing points in a distorted space governed by an inner product
〈~u,~v〉S with S = K−>K−1 moving with (KRK−1, KT ).
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As a consequence, all algorithms described for the calibrated case can be trans-
ferred to the uncalibrated case by rewriting everything in terms of the new inner
product 〈·, ·〉S. Only in the case S = I the reconstruction corresponds up to a
scalar to the true Euclidean structure.
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Chapter 9

The Fundamental Matrix

We now study epipolar geometry for uncalibrated cameras. In particular, we will
derive the epipolar constraint in terms of uncalibrated image coordinates, and we
will see how the structure of the essential matrix is modified by the calibration
matrix.

For simplicity of notation, we will assume K = K1 = K2, i.e. the same camera has
captured both images.

9.1 Uncalibrated Epipolar Geometry

The epipolar constraint 〈~x2, T̂R~x1〉 = 0 expresses, that the three vectors ~x1, ~x2

and T are coplanar.

In the uncalibrated space the corresponding three vectors are obtained by making
use of the transform ~x = K−1~x′.

Substituting vectors in the epipolar constraint 〈~x2, T̂R~x1〉 = 0 we compute:

~x>2 T̂R~x1 = 0 ⇔
(
K−1~x′2

)>
T̂R

(
K−1~x1

)
= 0 (9.1)

so that we obtain the uncalibrated version of the epipolar constraint as

(~x′2)
>
K−>T̂RK−1~x1 = 0 (9.2)

The matrix
F := K−>T̂RK−1 ∈ R3×3 (9.3)

appearing in (9.2) is called the fundamental matrix.

As an alternative derivation, one may follow the same procedure as we proposed
for the calibrated case, i.e. by elimination of the unknown depth scales λ1, λ2 from
the rigid-body motion

λ2~x2 = Rλ1~x1 + T (9.4)
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where λ~x = ~X. Multiplication of (9.4) with the calibration matrix K gives

λ2K~x2 = KRλ1~x1 +KT ⇔ λ2~x
′
2 = KRK−1λ1~x

′
1 + T ′ (9.5)

where ~x′ = K~x and T ′ = KT . In order to eliminate the unknown depth, we
multiply both sides with

T ′ × ~x′2 = T̂ ′~x′2

{
⊥ ~x′2
⊥ T ′

(9.6)

(of course taking the transpose) yielding

λ1(~x′2)>(T̂ ′)>KRK−1~x′1 = 0 (9.7)

Using (T̂ ′)> = −T̂ ′ and dividing by −λ1 gives

(~x′2)>T̂ ′KRK−1~x′1 = 0 (9.8)

This is an alternative form of the epipolar constraint, expressed using T ′.

Let us consider the relation between (9.2) and (9.8). To this end we make use of

Lemma 9.1.1 For a vector T ∈ R3 and a matrix K ∈ R3×3, if det(K) = +1 and
T ′ = KT , then T̂ = K>T̂ ′K.

The proof makes use of the issue that for det(K) = +1, the mappings K> ·̂K and
ˆK−1(·) act identically upon the canonical basis vectors of R3.

In our context, the lemma states that

K−>T̂K−1 = K̂T (9.9)

if det(K) = +1. Under the same condition we have

F = K−>T̂RK−1 = K−>T̂K−1︸ ︷︷ ︸
=T̂ ′

KRK−1 (9.10)

Thus, for det(K) = +1 we have

F = K−>T̂RK−1 = T̂ ′KRK−1 (9.11)

For det(K) 6= 1, one may simply scale all the matrices by a factor. We will have

K−>T̂RK−1 ∼ T̂ ′KRK−1 (9.12)

so that we can just assume det(K) = +1.
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9.2 Properties of the Fundamental Matrix

The fundamental matrix F maps a point ~x′1 in the first view to a vector

~l2 := F~x′1 ∈ R3 (9.13)

in the second view, so that

(~x′2)>F~x′1 = (~x′2)>~l2 = 0 (9.14)

This means, the vector ~l2 defines implicitly a line in the second image plane as the
collection of image points {~x′2} that satisfy

~l>2 ~x
′
2 = 0 (9.15)

Similarly, we may interprete the equation

~l1 := F>~x′2 ∈ R3 (9.16)

(obtained by taking the transpose in (~x′2)>F~x′1) as F transferring a point in the
second image to a line in the first.

These lines are again the epipolar lines. We can conclude:

Lemma 9.2.1 Two image points ~x′1, ~x′2 correspond to a single point in space if

and only if ~x′1 is on the epipolar line ~l1 = F>~x′2, or equivalently, ~x′2 is on the

epipolar line ~l2 = F~x′1.

This lemma is very useful in establishing correspondences. In fact, knowing the
fundamental matrix allows to restrict the search for corresponding points to the
epipolar lines only, rather than on the entire image.

Since the fundamental matrix F is the product of a skew symmetric matrix T̂ ′ of
rank 2 (for T ′ 6= ~0) and a matrix KRK−1 ∈ R3×3 of rank 3, it must have rank 2.
Hence, F can be characterised in terms of the SVD F = UΣV > with

Σ = diag(σ1, σ2, 0) (9.17)

with some σi ∈ R+. In contrast to the essential matrix where Σ = diag(σ, σ, 0)
holds, we have only σ1 ≥ σ2.

In the calibrated case the essential matrix provides enough information to recover
pose and structure. In the uncalibrated case it is not possible to unravel R and T
from F .
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Let us consider the uncalibrated epipolar constraint:

(~x′2)>T̂ ′KRK−1~x′1 = 0 (9.18)

Because T̂ ′(T ′~v>) = (T̂ ′T ′)~v> = 0 for an arbitrary vector ~v ∈ R3, we can manipu-
late (9.18) to have equivalently

(~x′2)>T̂ ′
(
KRK−1 + T ′~v>

)
~x′1 = 0 (9.19)

Thus, if we wish to extract the relative camera pose (KRK−1, KT ) all we can do
is to obtain instead

Π :=
[
KRK−1 + T ′~v>, v4T

′] (9.20)

for some v ∈ R3 and v4 ∈ R. However, as one can show there is a canonical choice
for fixing the open parameters in (9.20).
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