Mathematical Foundations of Computer Vision

Michael Breuß

Released: 09.12.2011 Assigned to: Tutorial at 15.12.2011

Assignment 6 – Completing the Sixpack

Exercise No. 1 – Exponentiate Rodrigues

The aim of this exercise is to validate the *formula of Rodrigues* for a rotation matrix: Given $\vec{w} \in \mathbb{R}^3$, the matrix exponential $R = e^{\hat{w}}$ is given by

$$e^{\hat{w}} = I + \frac{\hat{w}}{\|\vec{w}\|} \sin \|\vec{w}\| + \frac{\hat{w}^2}{\|\vec{w}\|^2} \left(1 - \cos \|\vec{w}\|\right)$$
(1)

The proof is done in three steps:

- (a) Validate for \vec{w} being of unit length, that (i) $\hat{w}^2 = \vec{w}\vec{w}^\top I$ and (ii) $\hat{w}^3 = -\hat{w}$. (4pts)
- (b) Show that it holds:

$$e^{\hat{w}t} = I + \left(t - \frac{t^3}{3!} + \frac{t^5}{5!} \mp \cdots\right)\hat{w} + \left(\frac{t^2}{2!} - \frac{t^4}{4!} + \frac{t^6}{6!} \mp \cdots\right)\hat{w}^2$$
(6pts)

(c) Prove that (1) holds true.

Exercise No. 2 – Special Orthogonal Logarithms

Let us consider

Theorem 1 Given any $R \in SO(3)$, there exists a (in general, not unique) vector $v \in \mathbb{R}^3$ such that $R = e^{\hat{v}}$. We denote the inverse of the exponential map as $\hat{v} = \log(R)$.

Prove the theorem.

Exercise No. 3 – True Lies

Consider twist coordinates ξ . Prove or disprove for $\vec{w} \neq \vec{0}$

$$e^{\hat{\xi}} = \begin{pmatrix} e^{\hat{w}} & \frac{(I-e^{\hat{w}})\hat{w}v + \vec{w}\vec{w}^{\top}v}{\|w\|} \\ \vec{0}^{\top} & 1 \end{pmatrix}$$
(2)

where $v(t) = \dot{T}(t) - \hat{w}T(t)$.

(8pts)

(6pts)

(6pts)