Mathematical Foundations of Computer Vision

Michael Breuß

Released: 25.11.2011 Assigned to: Tutorial at 01.12.2011

Assignment 5 – Linear Algebra from Scratch (LFS)

Exercise No. 1 – Start the System

Let $S = \{v_1, v_2, \dots, v_k\} \subset V$ and $W = \operatorname{span}(S)$.

The set S is the generating system of W, and W is the linear hull of v_1, v_2, \ldots, v_k .

Is $S = \{v_1, v_2, v_3\}$ with

$$v_1 = \begin{pmatrix} 1\\5\\4 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -2\\-1\\1 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 1\\3\\2 \end{pmatrix}$

a generating system of \mathbb{R}^3 ? Give a verbal reasoning of what you compute.

Exercise No. 2 – Zero Space in the Matrix

A set S of vectors is a *basis* of a vector space V if the members of S (= S itself) are linearly independent, and if S is a generating system of V.

The dimension dimV of V is identical to the number of elements in a basis. For $V = {\vec{0}}$, the zero space (which is a vector space by itself!), we set dimV = 0.

Determine a basis for the space of solutions and its dimension for

(2pts)

Is the following set $S = \{u_1, u_2, u_3\}$ a generating system or a basis or nothing from these two, of the \mathbb{R}^2 ?

$$u_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ and $u_3 = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$

(2pts)

Exercise No. 3 – Run the Kernel

For a matrix $A \in \mathbb{R}^{m \times n}$

- the subspace of \mathbb{R}^m spanned by its column vectors is its *column space*;
- the subspace of \mathbb{R}^n spanned by its row vectors is its *row space*;
- the space of solutions of the homogeneous system $Ax = \vec{0}$ is the *kernel*.

One can show: The general solution x of Ax = b is equal to a (particular) solution x_0 of Ax = b plus the general solution $c_1v_1 + c_2v_2 + \ldots + c_kv_k$ of $Ax = \vec{0}$:

$$x = x_0 + c_1 v_1 + c_2 v_2 + \ldots + c_k v_k$$

(a) Let

$$Bx = b$$
 with $B = \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

(2pts)

Determine a basis of the kernel of B, and a particular solution x_0 of Bx = b. Give a geometrical interpretation of kernel, x_0 and x. (4pts)

Now, let

$$C = \left(\begin{array}{rrrr} 1 & 2 & -1 & 2 \\ 3 & 5 & 0 & 4 \\ 1 & 1 & 2 & 0 \end{array}\right)$$

(b) Compute bases for row space and kernel of C.

(c) Verify at hand of C: The kernel and the row space of a matrix are orthogonal complements. (2pts)

The dimension of column/row space of A is the *rank* of A and denoted rank(A), the dimension of the kernel is called *defect* of A, written as def(A).

(d) Prove
$$\operatorname{rank}(A) = \operatorname{rank}(A^{\top})$$
. (2pts)

Exercise No. 4 – Dimensionalize the System

One can prove the

Dimension Theorem. For a matrix A with n columns holds rank(A) + def(A) = n.

Determine rank and defect, plus verify the Dimension Theorem for

$$D = \left(\begin{array}{rrr} 2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0 \end{array}\right)$$

Exercise No. 5 – Matrix EigenheitenTM

For a quadratic matrix A **holds:** (*i*) The geometric multiplicity of an eigenvalue is not larger than its algebraic multiplicity, and (*ii*) A is *diagonalizable* (i.e. it is similar to a diagonal matrix) if and only if for *each* eigenvalue, the geometric multiplicity is identical to the algebraic multiplicity.

One can also show: For $A \in \mathbb{R}^{n \times n}$, A is diagonalizable if and only if n has n linearly independent eigenvectors.

(*a*) Determine for the following matrices the eigenvalues, their algebraic multiplicities, and the dimension of the associated eigenspaces:

$$E_1 = I \in \mathbb{R}^{n \times n}$$
, $E_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

What can you learn from these examples about the relation between regularity of a matrix and the dimension of its eigenspace? (8pts)

$$F_1 = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} , \quad F_2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{pmatrix}$$

Verify that F_1 and F_2 have the same eigenvalues with identical algebraic multiplicities. Determine for F_1 and F_2 the bases of the eigenspaces. Are they diagonalizable? Give a reasoning. (6pts)

(b) Let

$$G = \left(\begin{array}{rrr} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{array}\right)$$

Compute the eigenvalues of G. For each eigenvalue λ , compute rank and defect of $\lambda I - G$. What can you infer by the result? Is G diagonalizable? Give a reasoning. (6pts)

(4pts)

(2pts)