Mathematical Foundations of Computer Vision

Michael Breuß

Released: 18.11.2011 **Assigned to:** Tutorial at 24.11.2011

Assignment 4 – Matrix Reloaded

Exercise No. 1 – Enter the Matrix

We consider a function $y = \varphi(x)$ with $y \in \mathbb{R}^m$, $x \in \mathbb{R}^n$, and where φ is some transformation.

The Jacobian matrix of φ is defined as

$$\frac{\partial y}{\partial x} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$
(1)

(a) Let y = Ax with $y \in \mathbb{R}^m$, $x \in \mathbb{R}^n$, and where $A = (a_{ij}), A \in \mathbb{R}^{m \times n}$, does not depend on x.

Prove or disprove: $\frac{\partial y}{\partial x} = A$ (2pts)

(b) Let $f = x^{\top}Ax$ be given where $f \in \mathbb{R}, x \in \mathbb{R}^n, A = (a_{ij}), A \in \mathbb{R}^{n \times n}$.

Compute $\frac{\partial f}{\partial x}$ for (i) A not symmetric, and for (ii) A symmetric. (4pts)

- (c) Let $f(z) = y^{\top}(z)x(z)$ where $z \in \mathbb{R}^n$, $x(z) \in \mathbb{R}^n$, $y(z) \in \mathbb{R}^n$. Compute $\frac{\partial f}{\partial z}$. (2pts)
- (d) Let $\varphi(x) = ||x v||_2$, where $x, v \in \mathbb{R}^n$.

Compute $\frac{\partial \varphi}{\partial x}$.

Exercise No. 2 – Differentiate the Matrix

Now, let $A = (a_{ij})$ be a $m \times n$ matrix with $a_{ij} = a_{ij}(t), t \in \mathbb{R}$. Then

$$\frac{d}{dt}A(t) = \dot{A}(t) = \begin{pmatrix} \frac{da_{11}}{dt} & \cdots & \frac{da_{1n}}{dt} \\ \vdots & \ddots & \vdots \\ \frac{da_{m1}}{dt} & \cdots & \frac{da_{mn}}{dt} \end{pmatrix} \in \mathbb{R}^{m \times n}$$
(2)

(a) Let $B, C \in \mathbb{R}^{n \times n}$ with $B = (b_{ij}), b_{ij} = b_{ij}(t)$ and $C = (c_{ij}), c_{ij} = c_{ij}(t)$.

Let BC = I. Compute the equation resulting out of

$$\frac{d}{dt}\left[BC\right] = \frac{d}{dt}\left[I\right]$$

(4pts)

(2pts)

(b) Let $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ be invertible, with $a_{ij} = a_{ij}(t)$.

Compute
$$\frac{d}{dt} [A^{-1}]$$
. (4pts)

Exercise No. 3 – Matrix Trinity

We consider again the *similarity* property.

We remember, that for given $A \in \mathbb{R}^{n \times n}$ there is a similar matrix Λ if we have an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ with $A = Q\Lambda Q^{\top}$.

(a) Prove that the following implication holds:If A can be made similar to a diagonal matrix Λ , then A is symmetric.(4pts)

We have made use already of such matrices Q composed of the eigenvectors of A. We give this some more basement:

(b)Prove that the following assertion holds:For a symmetric matrix A, the eigenvalues are real.(4pts)We supplement this by:(4pts)

(c) Prove that the following assertion holds:For a symmetric matrix A, the eigenvectors to different eigenvalues are orthogonal. (4pts)