Mathematical Foundations of Computer Vision

Michael Breuß

Released: 10.11.2011 Assigned to: Tutorial at 17.11.2011

Assignment 3 – Rigid Body-Workout

Exercise No. 1 – Slow Down Baby

We stretch our muscles via a few exercises upon important assertions of the mathematical *back to basics* tracklist.

(a) For $R = (r_{ij}) \in SO(3)$, prove by using Cramer's rule that

$$\begin{array}{rcl} r_{11} & = & r_{22}r_{33} - r_{23}r_{32} \\ r_{22} & = & r_{11}r_{33} - r_{13}r_{31} \\ r_{33} & = & r_{11}r_{22} - r_{21}r_{12} \end{array}$$

(2pts)

(b) Two quadratic matrices A and B are called *similar* if a regular matrix U exists, so that $B = U^{-1}AU$. The transform $A \mapsto U^{-1}AU$ is called *similarity transform*.

Let us also recall the definition of the *geometric multiplicity* of an eigenvalue: It is the dimension of the associated eigenspace.

Prove that

similar matrices A and B have the same characteristic	c polynomials.	(4pts)
---	----------------	--------

2. the geometric multiplicity of the eigenvalues of A and B is the same. (4pts)

(c) Given is the matrix

$$A := \frac{1}{9} \begin{pmatrix} 0 & -1 & -2 \\ -1 & 0 & -2 \\ -2 & -2 & -3 \end{pmatrix}$$
(1)

Compute all eigenvalues of A and determine a basis for the resulting eigenspaces. Determine an orthogonal matrix U such that $\Lambda = U^{\top}AU$ is of diagonal form. Which transformation steps are described by the factors in the mapping $u \mapsto U\Lambda U^{\top}$? (6pts)

Exercise No. 2 – Treasure of the Indian Ocean

We relax - making use of the *formula of Rodrigues*:

$$R = I\cos\phi + \hat{v}\sin\phi + vv^{\dagger}(1 - \cos\phi) \tag{2}$$

We dive (in the ocean of math) for the following, precious expressions for the angle ϕ and the axis of rotation v from a given general rotation matrix $R \in \mathbb{R}^{3 \times 3}$:

(a)
$$\cos \phi = \frac{1}{2} (\operatorname{trace}(R) - 1)$$

(b) $\hat{v} = \frac{1}{2 \sin \phi} (R - R^{\top})$

The task is to show the derivation of these formulae in detail.

(4+4pts)

Exercise No. 3 – Twist it

Let the matrix

$$D := \frac{1}{9} \begin{pmatrix} 8 & 1 & -4 \\ 4 & -4 & 7 \\ -1 & -8 & -4 \end{pmatrix}$$
(3)

be given.

- (a) Show that D is in SO(3).
 (2pts)
 (b) Compute the rotation axis and normalise the result.
 (3pts)
- (c) Compute the angle of rotation. (3pts)

Exercise No. 4 – Choreography of the Twist

Our aim is to describe the rotation of the \mathbb{R}^3 about the axis $v = (1, 1, -1)^\top$ and the angle $\phi = \pi/2$.

- (a) Compute an orthonormal basis $\{w_1, w_2, w_3\}$ of the \mathbb{R}^3 with $w_1 || v$. (2pts)
- (b) Determine the matrix realising the rotation w.r.t. the basis $\{w_1, w_2, w_3\}$. (2pts)
- (c) Compute the orthogonal matrix S for the basis transform $\{e_1, e_2, e_3\} \rightarrow \{w_1, w_2, w_3\}$. (2pts)
- (d) Determine the matrix C describing the rotation in the canonical basis. (2pts)