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Fig. 1.2: Reconstruction result of Fig. 1.1
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Motivation
Convolution

Two-Dimensional Convolution:

Convolution

o discrete convolution of two images
9 = (9i,5)ijez and w = (wi,5)i,jez :

(g*xw)s;:= ZZgi—k,j—zwk,e (1)

kEZ LeZ

e components of convolution kernel w can be regarded as mirrored
weights for averaging the components of g

o the larger the kernel size the larger the runtime

e ordinary convolution implementation needs O(n?)




Motivation

Gaussian Pyramid

e sequence of images go, g1, ---, gn

e computed by a filtering procedure equivalent to convolution with a
local, symmetric weighting function
—> e.g. a Gaussian kernel

Gaussian Pyramid

Procedure:
e image initialised by array go which contains C' columns and R rows
e each pixel represents the light intensity I between 0 and 255
— go is the zero level of Gaussian Pyramid
e each pixel value in level i is computed as a weighting average of

level ¢ — 1 pixel values
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Fig. 2: One-dimensional graphic representation of the Gaussian pyramid



Motivation
Gaussian Pyramid - Example

GAUSSIAN PYRAMID

Gaussian Pyramid -

Example

B = ..
2 3 4 5

Fig. 3: First six levels of the Gaussian pyramid for the “Lena” image. The original image, level 0, measures 257x257 pixels —=> level 5 measures just 9x9 pixels

Remark:
density of pixels is reduced by half in one dimension and by fourth in
two dimensions from level to level




Motivation

From Gaussian to Laplacian Pyramid

Fig. 4: First four levels of the Gaussian and Laplacian pyramid of Fig.3.

e each level of Laplacian pyramid is the difference between the
corresponding and the next higher level of the Gaussian pyramid

o full expansion is used in Fig. 4 to help visualise the contents the
pyramid images



1. Motivation

Convolution Pyramids

2. Convolution Pyramids
@ Approach
@ Forward and Backward Transform
@ Flow Chart and Pseudocode
@ Optimisation
3. Application 1 - Gaussian Kernels
4. Application 2 - Boundary Interpolation
5. Application 3 - Gradient Integration

6. Summary




Convolution Pyramids
Approach

Task:
o approximate effect of convolution with large kernels
— higher spectral accuracy + translation-invariant operation
e Is it also possible in O(n)?

Approach
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Approach

Task:
o approximate effect of convolution with large kernels
— higher spectral accuracy + translation-invariant operation
e Is it also possible in O(n)?

Idea:
o use of repeated convolution with small kernels on multiple scales
e disadvantage: not translation-invariant due to subsampling
operation to reach O(n) performance
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Convolution Pyramids

Approach

Task:
o approximate effect of convolution with large kernels
— higher spectral accuracy + translation-invariant operation
e Is it also possible in O(n)?

Idea:
o use of repeated convolution with small kernels on multiple scales
e disadvantage: not translation-invariant due to subsampling
operation to reach O(n) performance

nt Integration

Method:
e pyramids rely on a spectral “divide-and-conquer” strategy
e no subsampling of the decomposed signal increases the
translation-invariance
o use finite impulse response filters to achieve some spacial
localisation and runtime O(n)

Summary




Convolution Pyramids
Forward and Backward Transform

Forward Transform - Analysis Step: Motivation
e convolve a signal with a first filter h, Convolution Pyramids
e subsample the result by a factor of two
e process is repeated on the subsampled data
e an unfiltered and unsampled copy of the signal is kept at each level

Forward and Backward
Transform

ah = a* @ | e

ssian Kernels




Convolution Pyramids
Forward and Backward Transform

Forward Transform - Analysis Step:
e convolve a signal with a first filter SR et
e subsample the result by a factor of two
e process is repeated on the subsampled data

an unfiltered and unsampled copy of the signal is kept at each level

Forward and Backward
Transform

Backward Transform - Synthesis Step:

nt Integration

e upsample by inserting a zero between every two samples

e convolve the result with a second filter ho

e combine upsampled signal with the signal stored at each level after
convolving with a third filter g

@' =hyx (ta™) +gxag 4)




Convolution Pyramids

Flow Chart and Pseudocode

Flow Chart and
Pseudocode

Fig. 5: Flow Chart to visualise pyramid structure, source taken from [1]

Algorithm 1 Multiscale Transform

1: Determine the number of levels L
2: {Forward transform (analysis) }
3:a=a
4: foreachlevell = 0...L — 1do
5: (1,6 = u,l
6: alt?t =1 (h1 *al)
7: end for
8: {Backward transform (synthesis)}
9: al' =gxa
10: foreachlevell = L — 1...0 do
11 al = ho * (1 é,H'l)—}—g*u,fJ

-
N..

: end for




Convolution Pyramids

Optimisation

Kernel Determination:

target kernel f is given
seek a set of kernels .% = {h1, h2, g} that minimise

. A0
argmin| a4z - f * a | (5)
result of target '_nF’Ut
multiscale kernel signal
transform

kernels in % should be small and separable

use larger and/or non-separable filters increase accuracy

— specific choice depends on application requirements
remarkable results using separable kernels in .% for non-separable
target filters f

target filters f with rotational and mirroring symmetries enforce
symmetry on hi, ha, g

Votivation

Convolution Pyramids

Optimisation

ation 1 -

ian Kernels

Interpolation

ation 3 -

nt Integration

Summary
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Application 1 - Gaussian Kernels
Gaussian Kernel Convolution
Task:

2
Izl

o approximate Gaussian kernels e 2-2" at the original fine grid in O(n)
e no truncated filter support

Gaussian Kernel

Convolution




Application 1 - Gaussian Kernels

Gaussian Kernel Convolution

Task:

2
Izl

o approximate Gaussian kernels e 2-2" at the original fine grid in O(n)
e no truncated filter support

Determination of .% = {h1, hs, g}:

. ~0
argmin|| a4z — f x _a | (5)
result of target image
multiscale Gaussian to

transform kernel convolve

Convolution Pyramids

Gaussian Kernel
Convolution

Application 2 -
Boundary Interpolation

\pplication 3 -

Sradient Integration

Summary



Application 1 - Gaussian Kernels

Gaussian Kernel Convolution

Task:

2
Izl

o approximate Gaussian kernels e 2-2" at the original fine grid in O(n)
e no truncated filter support

Determination of .% = {h1, hs, g}:

argmin|| a% — f x  a [ (5)
result of target image
multiscale Gaussian to
transform kernel convolve

Problem:
o Gaussians are rather efficient low-pass filters
e pyramid contains high-frequent components coming from finer
levels introduced by convolution with g

Votivation

Convolution Pyramids

Gaussian Kernel
Convolution

dient Integration

Summary



Application 1 - Gaussian Kernels

Example - Gaussian Filter

Solution:

e modulation of g at each level [
e higher w' at the levels closest to the target size
o for different o different sets of kernels .% are necessary

Fig. 6.1: Original image,
source: taken from [1]

Fig. 6.2: Exact convolution with a Gaussian filter
(o = 4), source: taken from [1]

Fig. 6.3: Convolution using optimization
approach for & = 4, source: taken from [1]

Fig. 7.1: Exact kernels (in red) with
approximated kernels (in blue),
source: taken from [1]

Fig. 7.2: Exact Gaussian (red), approximation
using 525 kernels (blue) and 77 kernel
(green) , source: taken from [1]

Fig. 7.3: Magnification of Fig. 7.2 shows better
accuracy of larger kernels,
source: taken from [1]

Example - Gaussian Filter

ation 2 -

y Interpolation

Sradient Integration



http://www.cs.huji.ac.il/labs/cglab/projects/convpyr/data/filters.txt

Application 1 - Gaussian Kernels

Example - Scattered Data Interpolation

Fig. 8.1: Horizontal slice through exact
wider Gaussian (red) and
approximation (blue),

source: taken from [1]

Fig. 8.4: Approximation with
wider Gaussian,
source: taken from [1]

Fig. 8.3: Scattered data
interpolation input ,
source: taken from [1]

/
/

Fig. 8.2: Horizontal slice through exact Fig. 8.6: Exact results
corresponding to red wider
Gaussian , source: taken from

narrower Gaussian (red) and
approximation (blue),
source: taken from [1] [}

nvolution Py

Example - Scattered Data

Fig. 8.5: Approximation with Interpolation
narrower Gaussian,
source: taken from [1] —

Application 2 -

Boundary Interpolation

\pplication 3 -
adient Integration

Fig. 8.7: Exact results
corresponding to red narrower
Gaussian,

source: taken from [1]
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Application 2 - Boundary Interpolation

How to use boundary interpolation?

Seamless Image Cloning:
o formulation as boundary value problem
o effectively solved by constructing a smooth membrane
o interpolation of differences along a seam between two images

How to use boundary
interpolation?




Application 2 - Boundary Interpolation
How to use boundary interpolation?

Seamless Image Cloning:
o formulation as boundary value problem
o effectively solved by constructing a smooth membrane
o interpolation of differences along a seam between two images

Motivation

Shepard’s Method:
e Q) is region of interest and boundary values are given by b(z) B2
e smoothly interpolates boundary values to all grid points inside 2
o defines interpolant r at = as weighted average of boundary values:

How to use boundary

> Wi (2)b(zk) ;L:ow(xi»xj)f(xj) w * T
rr)= ———F"F+——— =r1r(x;) = = =
=%, @) ) = S e xe(m) ~ wrx
e xj = boundary points, b(x) = boundary values
o weight function wy(z) is given by
1
wi(z) = w(zk, ) = W (7)

e strong spike at xx and decays rapidly away from it
e computational cost O(Kn), K boundary values and n points in €




Application 2 - Boundary Interpolation

Example - Seamless Cloning

Determination of % = {h1, hs,g}:
. ~0
argmin|| a4z — fxa | (%) wolution Pyramids
s ~— ——

result of exact Slication 1
multiscale membrane  Kernels
transform r(z) B

ation 2
y Interp

Example - Seamless

Cloning

plication 3 -

ient Integratio

Fig. 9.3: Target image,
source: taken from [2]

Fig. 9.2: Membrane mask,
source: taken from [2]

Fig. 9.1: Source imag;, -
source: taken from [2]

Fig. 9.6: Result of applying Fig. 9.4 to Fig. 9.5,
source: taken from [1]

Fig. 9.4: Approximated membrane Fig. 9.5: Superimposed image with a cloned
source: taken from [1] patch, source: taken from [1]



http://www.cs.huji.ac.il/labs/cglab/projects/convpyr/data/filters.txt
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Application 3 - Gradient Integration

Kernel Detection

Determination of .% = {h1, ha, g}:

e choose a natural image I

e qa is the divergence of its gradient field:

a=dvVI (8)
I=fxa (9)
argmin|  a% fra | (5)
F A N~
result of natural
multiscale image
transform I

Fig. 10.1: Natural image I,
source: taken from [1]

Fig. 10.2: Corresponding gradient image a of
Fig. 10.1, source: taken from [1]

Kernel Detection




Application 3 - Gradient Integration

Example - Gradient Integration

Motivation
Convolution Pyramids

Application 1
[CEUESEURCIGER

Application 2
Boundary Interpolation

Application 3
Gradient Integration

Fig. 11.1: Gradient image of Fig 11.4, Fig. 11.2: Reconstruction of Fig. 11.1 with Fig. 11.3: Reconstruction of Fig. 11.1 with
&5 ,3 . source: taken from [1] 37' 5., source: taken from [1]

source: taken from [1]

Example - Gradient
Integration

Summary

Fig. 11.4: Original image (512x512), Fig. 11.5: Absolute errors of Fig. 11.2 Fig. 11.6: Absolute errors of Fig. 11.3
source: taken from [1] (magnified by x50), source: taken from [1] (magnified by x50), source: taken from [1]

17/22


http://www.cs.huji.ac.il/labs/cglab/projects/convpyr/data/filters.txt

Application 3 - Gradient Integration

How does the target filter look like?

Task:
e recover image u (here: u = a%) by solving the Poisson equation

Au = divv (10)
e v = gradient field

How does the target filter
look like?




Application 3 - Gradient Integration

How does the target filter look like?

Task:
e recover image u (here: u = a%) by solving the Poisson equation

Au = divv (10)
e v = gradient field

Solution:
e Green’s functions

Gz, 2') = G(llz - ') = =

— 11
27r°g\| (11)

z — |
define fundamental solutions to the Poisson equation
ANG(z,z") = §(z,x) (12)
e § = discrete delta function
e (10) is defined over an infinite domain with no boundary constraints
—> Laplace operator becomes spatially invariant
= Green’s function becomes translation invariant
e solution of (10) is given by the convolution
u =G *xdvv (13)

How does the target filter
look like?

Summary




Application 3 - Gradient Integration

Reconstruction of Target Filter

Target Filter Determination:
e using results of previous .# = {hi, ha, g}
e ¢ is a centered delta function

a =divVI
I=fxa
e Green'’s function provides a suitable result for f

Fig. 12.1: Reconstruction of the Green's function, Fig. 12.2: space invariant corresponding kernel of Fig. 12.1,
source: taken from [1] source: taken from [1]

Reconstruction of Target
Filter

Summary
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Summary

Summary

o approximation of large convolution filters in O(n)
= using kernels of small support .% = {h1, h2, g}
+ multiscale pyramid scheme

o kernel determination by optimization:

: 0
argmin|| a4z — f *x _a |
result of target input Summary
multiscale kernel signal

transform

o suitable for different applications like...
e gradient integration
e seamless cloning
e scattered data interpolation
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