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Convolution

Two-Dimensional Convolution:
• discrete convolution of two images
g = (gi,j)i,j∈Z and w = (wi,j)i,j∈Z :

(g ∗ w)i,j :=
∑
k∈Z

∑
`∈Z

gi−k,j−`wk,` (1)

• components of convolution kernel w can be regarded as mirrored
weights for averaging the components of g

• the larger the kernel size the larger the runtime
• ordinary convolution implementation needs O(n2)
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Gaussian Pyramid

• sequence of images g0, g1, ..., gn
• computed by a filtering procedure equivalent to convolution with a

local, symmetric weighting function
=⇒ e.g. a Gaussian kernel

Procedure:
• image initialised by array g0 which contains C columns and R rows
• each pixel represents the light intensity I between 0 and 255

=⇒ g0 is the zero level of Gaussian Pyramid
• each pixel value in level i is computed as a weighting average of

level i− 1 pixel values

Fig. 2: One-dimensional graphic representation of the Gaussian pyramid
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Gaussian Pyramid - Example

Fig. 3: First six levels of the Gaussian pyramid for the “Lena” image. The original image, level 0, measures 257x257 pixels =⇒ level 5 measures just 9x9 pixels

Remark:

density of pixels is reduced by half in one dimension and by fourth in
two dimensions from level to level
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From Gaussian to Laplacian Pyramid

Fig. 4: First four levels of the Gaussian and Laplacian pyramid of Fig.3.

• each level of Laplacian pyramid is the difference between the
corresponding and the next higher level of the Gaussian pyramid

• full expansion is used in Fig. 4 to help visualise the contents the
pyramid images

6 / 22



Motivation

Convolution Pyramids

Approach

Forward and Backward

Transform

Flow Chart and

Pseudocode

Optimisation

Application 1 -
Gaussian Kernels

Application 2 -
Boundary Interpolation

Application 3 -
Gradient Integration

Summary

Overview

1. Motivation

2. Convolution Pyramids
Approach
Forward and Backward Transform
Flow Chart and Pseudocode
Optimisation

3. Application 1 - Gaussian Kernels

4. Application 2 - Boundary Interpolation

5. Application 3 - Gradient Integration

6. Summary

6 / 22



Motivation

Convolution Pyramids

Approach

Forward and Backward

Transform

Flow Chart and

Pseudocode

Optimisation

Application 1 -
Gaussian Kernels

Application 2 -
Boundary Interpolation

Application 3 -
Gradient Integration

Summary

Convolution Pyramids

Approach

Task:
• approximate effect of convolution with large kernels

=⇒ higher spectral accuracy + translation-invariant operation
• Is it also possible in O(n)?

Idea:
• use of repeated convolution with small kernels on multiple scales
• disadvantage: not translation-invariant due to subsampling

operation to reach O(n) performance

Method:
• pyramids rely on a spectral “divide-and-conquer” strategy
• no subsampling of the decomposed signal increases the

translation-invariance
• use finite impulse response filters to achieve some spacial

localisation and runtime O(n)
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Forward and Backward Transform

Forward Transform - Analysis Step:

• convolve a signal with a first filter h1

• subsample the result by a factor of two
• process is repeated on the subsampled data
• an unfiltered and unsampled copy of the signal is kept at each level

al0 = al (2)

al+1 = ↓ (h1 ∗ al) (3)

Backward Transform - Synthesis Step:

• upsample by inserting a zero between every two samples
• convolve the result with a second filter h2

• combine upsampled signal with the signal stored at each level after
convolving with a third filter g

âl = h2 ∗ (↑ âl+1) + g ∗ al0 (4)
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Convolution Pyramids

Flow Chart and Pseudocode

Fig. 5: Flow Chart to visualise pyramid structure, source taken from [1]

Algorithm 1 Multiscale Transform
1: Determine the number of levels L

2: {Forward transform (analysis)}
3: a0 = a

4: for each level l = 0...L− 1 do
5: al0 = al

6: al+1 = ↓ (h1 ∗ al)
7: end for
8: {Backward transform (synthesis)}
9: âL = g ∗ aL

10: for each level l = L− 1...0 do
11: âl = h2 ∗ (↑ âl+1) + g ∗ al0
12: end for
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Optimisation

Kernel Determination:
• target kernel f is given
• seek a set of kernels F = {h1, h2, g} that minimise

arg min
F

‖ â0F︸︷︷︸
result of

multiscale
transform

− f︸︷︷︸
target
kernel

∗ a︸︷︷︸
input
signal

‖ (5)

• kernels in F should be small and separable
• use larger and/or non-separable filters increase accuracy

=⇒ specific choice depends on application requirements
• remarkable results using separable kernels in F for non-separable

target filters f
• target filters f with rotational and mirroring symmetries enforce

symmetry on h1, h2, g
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Application 1 - Gaussian Kernels

Gaussian Kernel Convolution

Task:

• approximate Gaussian kernels e
‖x‖2

2σ2 at the original fine grid inO(n)

• no truncated filter support

Determination of F = {h1, h2, g}:

arg min
F

‖ â0F︸︷︷︸
result of

multiscale
transform

− f︸︷︷︸
target

Gaussian
kernel

∗ a︸︷︷︸
image

to
convolve

‖ (5)

Problem:

• Gaussians are rather efficient low-pass filters
• pyramid contains high-frequent components coming from finer

levels introduced by convolution with g
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Application 1 - Gaussian Kernels

Example - Gaussian Filter

Solution:
• modulation of g at each level l
• higher wl at the levels closest to the target size
• for different σ different sets of kernels F are necessary

Fig. 6.1: Original image,
source: taken from [1]

Fig. 6.2: Exact convolution with a Gaussian filter
(σ = 4), source: taken from [1]

Fig. 6.3: Convolution using optimization
approach forσ = 4, source: taken from [1]

Fig. 7.1: Exact kernels (in red) with
approximated kernels (in blue),
source: taken from [1]

Fig. 7.2: Exact Gaussian (red), approximation
using 5x5 kernels (blue) and 7x7 kernel
(green) , source: taken from [1]

Fig. 7.3: Magnification of Fig. 7.2 shows better
accuracy of larger kernels,
source: taken from [1]

used kernels

12 / 22

http://www.cs.huji.ac.il/labs/cglab/projects/convpyr/data/filters.txt


Motivation

Convolution Pyramids

Application 1 -
Gaussian Kernels

Gaussian Kernel

Convolution

Example - Gaussian Filter

Example - Scattered Data

Interpolation

Application 2 -
Boundary Interpolation

Application 3 -
Gradient Integration

Summary

Application 1 - Gaussian Kernels

Example - Scattered Data Interpolation

Fig. 8.4: Approximation with
wider Gaussian,
source: taken from [1]

Fig. 8.5: Approximation with
narrower Gaussian,
source: taken from [1]

Fig. 8.6: Exact results
corresponding to red wider
Gaussian , source: taken from
[1]

Fig. 8.7: Exact results
corresponding to red narrower
Gaussian,
source: taken from [1]

Fig. 8.1: Horizontal slice through exact
wider Gaussian (red) and
approximation (blue),
source: taken from [1]

Fig. 8.2: Horizontal slice through exact
narrower Gaussian (red) and
approximation (blue),
source: taken from [1]

Fig. 8.3: Scattered data
interpolation input ,
source: taken from [1]
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Application 2 - Boundary Interpolation

How to use boundary interpolation?

Seamless Image Cloning:

• formulation as boundary value problem
• effectively solved by constructing a smooth membrane
• interpolation of differences along a seam between two images

Shepard’s Method:

• Ω is region of interest and boundary values are given by b(x)

• smoothly interpolates boundary values to all grid points inside Ω

• defines interpolant r at x as weighted average of boundary values:

r(x) =

∑
k wk(x)b(xk)∑

k wk(x)
=⇒ r(xi) =

∑n
j=0 w(xi, xj)r̂(xj)∑n
j=0 w(xi, xj)χr̂(xj)

=
w ∗ r̂
w ∗ χr̂

(6)

• xk = boundary points, b(xk) = boundary values
• weight function wk(x) is given by

wk(x) = w(xk, x) =
1

d(xk, x)3
(7)

• strong spike at xk and decays rapidly away from it
• computational cost O(Kn), K boundary values and n points in Ω
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Application 2 - Boundary Interpolation

Example - Seamless Cloning

Determination of F = {h1, h2, g}:

arg min
F

‖ â0F︸︷︷︸
result of

multiscale
transform

− f ∗ a︸ ︷︷ ︸
exact

membrane
r(x)

‖ (5)

Fig. 9.1: Source image,
source: taken from [2]

Fig. 9.2: Membrane mask,
source: taken from [2]

Fig. 9.3: Target image,
source: taken from [2]

Fig. 9.4: Approximated membrane
source: taken from [1]

Fig. 9.5: Superimposed image with a cloned
patch, source: taken from [1]

Fig. 9.6: Result of applying Fig. 9.4 to Fig. 9.5,
source: taken from [1]

Used Kernels
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Application 3 - Gradient Integration

Kernel Detection

Determination of F = {h1, h2, g}:
• choose a natural image I
• a is the divergence of its gradient field:

a = div∇I (8)

I = f ∗ a (9)

arg min
F

‖ â0F︸︷︷︸
result of

multiscale
transform

− f ∗ a︸ ︷︷ ︸
natural
image

I

‖ (5)

Fig. 10.1: Natural image I ,
source: taken from [1]

Fig. 10.2: Corresponding gradient imagea of
Fig. 10.1, source: taken from [1]
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Application 3 - Gradient Integration

Example - Gradient Integration

Fig. 11.1: Gradient image of Fig 11.4,
source: taken from [1]

Fig. 11.2: Reconstruction of Fig. 11.1 with
F5,3 , source: taken from [1]

Fig. 11.3: Reconstruction of Fig. 11.1 with
F7,5 , source: taken from [1]

Fig. 11.4: Original image (512x512),
source: taken from [1]

Fig. 11.5: Absolute errors of Fig. 11.2
(magnified by x50), source: taken from [1]

Fig. 11.6: Absolute errors of Fig. 11.3
(magnified by x50), source: taken from [1]

Used Kernels
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How does the target filter look like?

Task:

• recover image u (here: u = â0F ) by solving the Poisson equation

4u = div v (10)
• v = gradient field

Solution:

• Green’s functions

G(x, x′) = G(‖x− x′‖) =
1

2π
log

1

‖x− x′‖ (11)

define fundamental solutions to the Poisson equation

4G(x, x′) = δ(x, x′) (12)

• δ = discrete delta function
• (10) is defined over an infinite domain with no boundary constraints

=⇒ Laplace operator becomes spatially invariant
=⇒ Green’s function becomes translation invariant

• solution of (10) is given by the convolution

u = G ∗ div v (13)
18 / 22
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Reconstruction of Target Filter

Target Filter Determination:

• using results of previous F = {h1, h2, g}
• a is a centered delta function

a = div∇I (8)

I = f ∗ a (9)

• Green’s function provides a suitable result for f

Fig. 12.1: Reconstruction of the Green’s function,
source: taken from [1]

Fig. 12.2: space invariant corresponding kernel of Fig. 12.1,
source: taken from [1]
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Summary

• approximation of large convolution filters in O(n)

=⇒ using kernels of small support F = {h1, h2, g}
+ multiscale pyramid scheme

• kernel determination by optimization:

arg min
F

‖ â0F︸︷︷︸
result of

multiscale
transform

− f︸︷︷︸
target
kernel

∗ a︸︷︷︸
input
signal

‖

• suitable for different applications like...
• gradient integration
• seamless cloning
• scattered data interpolation
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