Adaptive Manifolds

Adaptive Manifolds for Real-Time High-Dimensional Filtering Milestones and Advances in Image Analysis

Markus Schwinn

November 27, 2012

Motivation

Adaptive Manifolds

Motivation

$$g_i = \frac{\sum_{p_j \in S} \phi(\hat{p}_i - \hat{p}_j) \cdot f_j}{\sum_{p_j \in S} \phi(\hat{p}_i - \hat{p}_j)}$$

- "framework" for some high-dimensional filter
- $\bullet \phi$ is a Gaussian kernel
- possible filters for 2D colour images:
 - convolution $\rightarrow \hat{p} \in \mathbb{R}^2$ bilateral $\rightarrow \hat{p} \in \mathbb{R}^5$

 - non-local mean $ightarrow \hat{p} \in \mathbb{R}^{3n^2+2}$ *n* depends on window size
- powerful... but very slow

Questions to Solve

Adaptive Manifolds

Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary

References

1 What are adaptive manifolds?

2 How to construct them?

3 What's the use of?

Manifolds Are Not Unknown!

Adaptive Manifolds

> Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary

References

■ practical use of manifolds → projecting world onto a map

4/23

Meaning of Adaptive

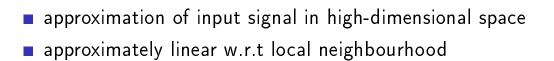
Adaptive Manifolds

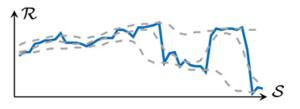
Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds


The Algorithm


Runtime

Applications

Summary

References

- For 2D colour image → dealing with 5-dimensional space
- Construction of one point on manifold

 $\rightarrow P(S_x, S_y, R_S, G_S, B_S)$ S denotes point in spatial domain

Computing Adaptive Manifolds

6/23

5/23

Adaptive Manifolds

> Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary

References

- 1 low-pass filtering input signal \rightarrow generates first manifold η_1
- 2 compute colour deviation of the pixels depending on manifold and original image

```
more technical:
largest eigenvector v<sub>1</sub> of
```

 $(f_1 - \eta_1) \cdot (f_1 - \eta_1)^T$

ightarrow v_1 describes variation of colour values

Computing Adaptive Manifolds

7/23

Adaptive Manifolds

Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary

References

3 cluster pixels in two subsets.

→ depending on "main colour" defining *above* and *below* w.r.t first manifold

more technical:

$$sign = v_1^T (f_i - \eta_{1i})$$

$$C_+ \leftarrow p_i \text{ if } sign \ge 0$$

$$C_- \leftarrow p_i \text{ if } sign < 0$$

Computing Adaptive Manifolds

Adaptive Manifolds

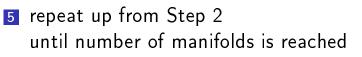
> Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm


Runtime

Applications

Summary

References

4 compute for each cluster manifolds η_+ and $\eta_$ higher weighting for pixels, not represented well in η_1

Adaptive Manifolds - Example

Adaptive Manifolds

Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary

References

original image

 $\sim \rightarrow$

 η_1

 η_+

 \rightarrow

 η_{-}

The Algorithm

10/23

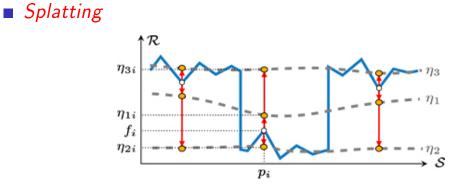
Adaptive Manifolds

Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds


The Algorithm

Runtime

Applications

Summary

References

projects colour for each position onto each manifold Gaussian weighted with

 $\Psi_{splat}(\hat{\eta}_{ki}) = \phi(\eta_{ki} - f_i)f_i$

 ϕ is a Gaussian kernel

The Algorithm

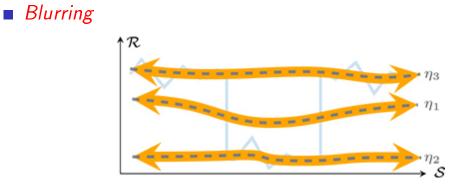
Adaptive Manifolds

> Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds


The Algorithm

Runtime

Applications

Summary

References

blurs over all manifolds

 $\Psi_{\textit{splat}}(\hat{\eta}_{\textit{ki}}) \rightsquigarrow \Psi_{\textit{blur}}(\hat{\eta}_{\textit{ki}})$

changes information between sample points η_{ki}

The Algorithm

12/23

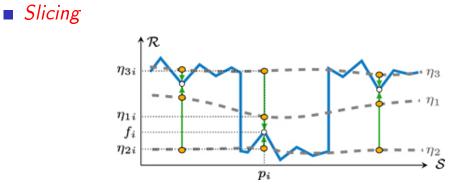
Adaptive Manifolds

> Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds


The Algorithm

Runtime

Applications

Summary

References

compute filter response interpolates by blurred values over all adapted manifolds

The Algorithm - all fits together

Adaptive Manifolds

> Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary

References

$$g_{i} = \frac{\sum_{p_{j} \in S} \phi(\hat{p}_{i} - \hat{p}_{j}) \cdot f_{j}}{\sum_{p_{j} \in S} \phi(\hat{p}_{i} - \hat{p}_{j})}$$

$$\Rightarrow g_{i} = \frac{\sum_{k=1}^{K} \phi(\hat{p}_{i} - \hat{p}_{j}) \cdot \Psi_{blur}(\hat{\eta}_{ki})}{\sum_{k=1}^{K} \phi(\hat{p}_{i} - \hat{p}_{j})}$$

$$\Rightarrow g_{i} = \frac{\sum_{k=1}^{K} \phi(\eta_{ki} - f_{i}) \cdot \Psi_{blur}(\hat{\eta}_{ki})}{\sum_{k=1}^{K} \phi(\eta_{ki} - f_{i})}$$

$$\Rightarrow g_{i} = \frac{\sum_{k=1}^{K} \phi(\eta_{ki} - f_{i}) \cdot \Psi_{blur}(\hat{\eta}_{ki})}{\sum_{k=1}^{K} \phi(\eta_{ki} - f_{i}) \cdot \Psi_{blur}(\hat{\eta}_{ki})}$$

$$\Rightarrow g_{i} = \frac{\sum_{k=1}^{K} \phi(\eta_{ki} - f_{i}) \cdot \Psi_{blur}(\hat{\eta}_{ki})}{\sum_{k=1}^{K} \phi(\eta_{ki} - f_{i}) \cdot \Psi_{blur}(\hat{\eta}_{ki})}$$

Number of Manifolds

14/23

Adaptive Manifolds

> Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runne

DC

- independent of number of pixels and dimension
- no general mechanism, sensitive to the problem
- but: depends of standard deviation of spatial- and range domain

Analysis

Adaptive Manifolds

Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary

References

Runtime

- clustering $\rightarrow O(dN \log K)$
 - computing manifolds $\rightarrow O(dNK)$
 - performing filter $\rightarrow O(dNK + dNK)$
 - in total: O(dNK) with $K = const \Rightarrow O(dN)$

 \Rightarrow high performance for runtime and good storage allocation

HD-Video Filtering

16/23

Adaptive Manifolds

> Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary

References

Edge-Aware Smoothing (5-D) Full-HD 1920x1080 at 0.007 sec per frame

HD-Video Filtering

Adaptive Manifolds

Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary

References

Edge-Aware Smoothing (5-D) Full-HD 1920x1080 at 0.007 sec per frame

HD-Video Filtering

18/23

Adaptive Manifolds

Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary

References

Detail Enhancement (5-D) Input Video Full-HD 1920x1080 at 0.007 sec per frame

Denoising with Additional Information

Adaptive Manifolds

> Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary

References

- add additional channels for more information
- adding a infrared channel → improving result

noisy image

infrared image

Denoising with Additional Information

20/23

19/23

Adaptive Manifolds

Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary

References

denoised results

without IR channel

with IR channel

Summary

Adaptive Manifolds

Markus Schwinn

Motivation

Adaptive Manifolds

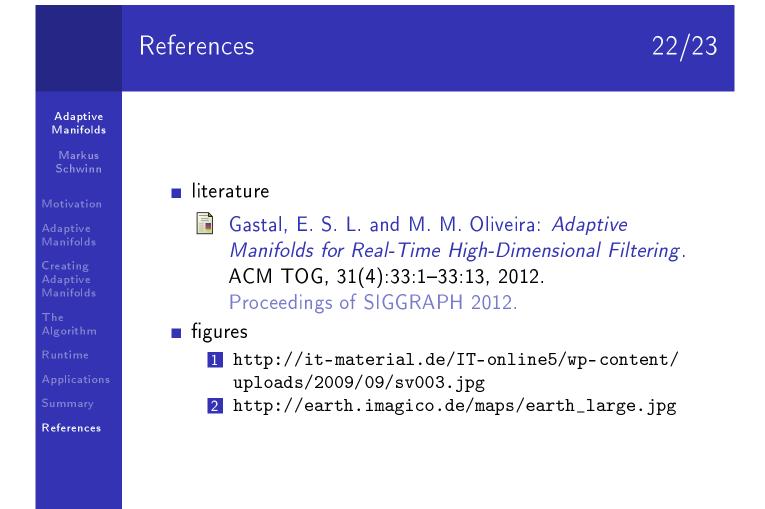
Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary


References

advantages

- adaptable for a "general framework"
- runtime linear in number of pixels and dimension
- euclidean and also geodesic filters adaptable

drawbacks

- sensitive to number of manifolds
- choose of Gaussian kernels (standard deviation)

Adaptive Manifolds

Markus Schwinn

Motivation

Adaptive Manifolds

Creating Adaptive Manifolds

The Algorithm

Runtime

Applications

Summary

References

Thank you for your Attention