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Seamless Cloning 

Selection Editing 

Texture 
Flattening 

• Compute gradient of image  

• Manipulate the gradient field in order to 

achieve the desired goal 
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Gradient field  and its application 



Second derivatives:      and      .  They are identical! Right: Integration of 
gradient field (      ,        )  which is identical to original image. 
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Integrating the Modified Gradient Field 
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In order to integrate the gradient field it should be curl-free: 

xyf yxf

xyf
yxf



• In fact, the modified gradient field might 

even be non-integrable! 

 

Milestones and Advances in Image Analysis, 2013 5 

Integrating the Modified Gradient Field 

Left: space of all solution right: add                      add correction 
gradient field to make it integrable. 

 yx  ,

x

y



• A common approach to achieve the surface 
from the non-integrable gradient field is to 
minimized the last square error function: 

 

 

 

 

• The goal is to obtain surface Z. p(x,y) and 
q(x,y) are given non-integrable gradient 
field. 
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Problem statement 

)dxdy  - q) (Z  - p)((ZJ(Z) yx  22



• Which can also write as: 

 

 

 

• The Euler-Lagrange equation gives the 

Poisson equation: 
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Effect of outliers in 2D integration (a) True surface (b) Reconstruction 
using Poisson solver. (c) If the location of outliers were known, rest of 
the gradients can be integrated to obtain a much better estimate.  

• Least square solution doesn't perform 

well in presence of outliers: 
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Problem of Poisson equation  
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General framework 

 dxdy , . . .)  , q , pZE(Z, p, q,J dcdcba yxyxyx

A general solution can be obtained by minimizing the following n-th 

order error functional: 
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General framework 
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In all solutions we assume Neumann boundary conditions given by: 
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• To achieve Poisson  equation from the 

general solution its just need to assume: 
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Poisson solver 
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• Techniques for robust estimation: 

1. α- Surface: Anisotropic scaling using 

binary weights 

2. Anisotropic scaling using continuous 

weight 

3. Affine transformation of gradient using 

diffusion tensor 
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Continuum of solution 



• Define initial spanning tree which is all 

gradient correspond to edge and are 

inliers 
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α- Surface 
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If α=0 we get our initial spanning tree and if α=1 we will get our 

poisson solver. 

By changing α one can trace a path  in the solution space. 



The α- Surface is a weighted approach where the 

weight are 1 for gradients in S and otherwise 

zero. 
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α- Surface formulation 
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• M- estimator: the effect of outliers is 

reduced by replacing the squared error 

residual by another function of residual: 
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Anisotropic scaling using continuous weight 
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• A method for image restoration from 

noisy image. 

 

 

• The Euler-Lagrange gives: 
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Affine transformation of gradient using diffusion tensor 
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Affine transformation of gradient using diffusion tensor 

D is 2×2 symmetric , positive-definite matrix at each pixel. 
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results 

Photometric Stereo on Vase: (Top row) Noisy input images and true surface (Next two rows) 

Reconstructed surfaces using various algorithms. (Right Column) One-D height plots for a  

can line across the middle of Vase. Better results are obtained using α-surface, Diffusion and  

M-estimator as compared to Poisson solver, FC and Regularization 
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results 

Photometric Stereo on Mozart: Top row shows noisy input images and the true surface. Next two 

rows show the reconstructed surfaces using various algorithms. (Right Column) One-D height 

plots for a scan line across the Mozart face. Notice that all the features of the face are preserved in 

the solution given by α-surface, Diffusion and M-estimator as compared to other algorithms. 
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results 

Photometric Stereo on Flowerpot: Left column shows 4 real images of a flower pot. Right 

columns show the reconstructed surfaces using various algorithms. The reconstructions using 

Poisson solver and Frankot-Chellappa algorithm are noisy and all features (such as top of 

flower pot) are not recovered. Diffusion, α-surface and M-estimator methods discount noise 

while recovering all the salient features. 
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results 
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results 



• A. Agrawal, R. Raskar: Gradient Domain Manipulation Techniques in 

Vision and Graphices. ICCV 2007 Course 

 

 

• Advanced Image Analysis, Lecture 9 by Dr. Christian Schmaltz  

 

 

• http://www.cfar.umd.edu/~aagrawal/eccv06/RangeofSurfaceReconstruct

ions.html 
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