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The Importance of Image Derivatives

differentiation: one of the most fundamental tasks of low level
image processing
used to detect edges and corners: perceptual building blocks
necessary for a host of other image processing operations: e.g.
smoothing, deblurring, segmentation

Figure: From Dalal & Triggs, 2005
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Contributions

derivatives in image processing typically obtained using
imprecise explicit schemes
main contributions [2, 3]:

1 establishing a link between implicit and explicit finite
differences used for gradient estimation

2 introducing new implicit differencing schemes and evaluating
their properties

3 attempting to demonstrate the usefulness and potential of
implicit finite differencing schemes for image processing tasks
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Implicit Finite Differences

common among numerical mathematicians and computational
physicists
seminal paper by Lele [1]: demonstrated superior performance
of implicit finite difference schemes
uses (among others):

1 accurate numerical simulations of physical problems involving
wave propagation phenomena

2 modelling weather phenomena
3 accurate visualisation of volumetric data
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Explicit vs. Implicit Methods

categorisation of numerical schemes
explicit methods: dependent variable can be obtained directly
from input variables
implicit methods: more complex relationship between
variables, requires solving systems of linear equations
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Taylor Approximations

Definition (Taylor Approximant of Order k)

f (x + h) =
k∑

i=0

f (i)(x)
i! (h)i + Rk(h)

= f (x) + f ′(x)(h) + . . .+
f (k)(x)

k! (h)k + Rk(h) (1)

approximation of a function f, centered at x
used to derive explicit finite difference schemes
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Padé Approximations

Definition (Padé Approximant of Order m/n)

R(x) =

m∑
j=0

ajx j

1+
n∑

k=1
bkxk

=
a0 + a1x + a2x2 + . . .+ amxm

1+ b1x + b2x2 + . . .+ bnxn (2)

approximation of a function by a rational function
often more precise than the Taylor approximation
later used to derive powerful implicit differentiation schemes
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Differentiation in the Frequency Domain

differentiation is a linear operation, thus has interesting
properties in the frequency domain
in particular: F [f n)] = (jω)nF [f ](u), with ω = 2πu
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Figure: Ideal Derivative

15 / 32 M. Omran On Implicit Image Derivatives and Their Applications



Introduction
Background

From Explicit to Implicit Differentiation Schemes
Discussion

Standard Explicit Schemes
From Explicit to Implicit Schemes
Advanced Implicit Schemes

Outline

1 Introduction
Motivation
Current Approach
Previous Work

2 Background
Explicit vs. Implicit Methods
Taylor and Padé Approximations
Differentiation as a Linear Operator

3 From Explicit to Implicit Differentiation Schemes
Standard Explicit Schemes
From Explicit to Implicit Schemes
Advanced Implicit Schemes

4 Discussion

16 / 32 M. Omran On Implicit Image Derivatives and Their Applications



Introduction
Background

From Explicit to Implicit Differentiation Schemes
Discussion

Standard Explicit Schemes
From Explicit to Implicit Schemes
Advanced Implicit Schemes

Standard Central Difference

Definition (Central Difference Operator)

f ′(x) ≈ 1
2h [f (x + h)− f (x − h)] (3)

1
2h
[
−1 0 1

]
(4)

frequency response of the central difference operator: jsinω
for 2D: rotate the mask for differentiation in y-direction
with estimates for fx and fy , we can compute gradient
magnitude and gradient orientation
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Introducing Rotation Invariance
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Figure: Central Difference Operator
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Sobel, Scharr, Bickley and others

Definition (General 3x3 Differentiation Kernel)

Dx =
1

2h(w + 2)

 −1 0 1
−w 0 w
−1 0 1

 =
1
2h
[
−1 0 1

] 1
w + 2

 1
w
1

 (5)

Sobel mask: w = 2 (corresponds to smoothing with a binomial kernel)
Bickley mask:w = 4
Scharr mask: w = 10/3 (popular method, that works well in practice)
NOTE: does not improve gradient magnitude estimation!
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Improving the Central Difference Operator

frequency response of the central difference operator: jsinω
compensate for smoothing effects by applying a binomal
kernel orthogonally:

1
w+2

 1
w
1


frequency response of the binomial kernel:
Sw (ω) =

w+2cosw
w+2

perhaps then an operator with a frequency response of
jsinω · 1

Sw (ω)?
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Padé Schemes

Definition (4th Order Tridiagonal Padé Scheme)

1
6 [f
′(x − h) + 4f ′(x) + f ′(x + h)] ≈ 1

2h [f (x + h)− f (x − h)] (6)

1
6(f
′

i−1 + 4f ′i + f ′i+1) =
1
2(−1 · fi-1 + 0 · fi + 1 · fi+1) (7)

derived using classical Padé approximations
lead to tridiagonal systems of linear equations
frequency response jsinω · 1

S4(ω)
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Padé Schemes
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Figure: Padé schemes

23 / 32 M. Omran On Implicit Image Derivatives and Their Applications



Introduction
Background

From Explicit to Implicit Differentiation Schemes
Discussion

Standard Explicit Schemes
From Explicit to Implicit Schemes
Advanced Implicit Schemes

Outline

1 Introduction
Motivation
Current Approach
Previous Work

2 Background
Explicit vs. Implicit Methods
Taylor and Padé Approximations
Differentiation as a Linear Operator

3 From Explicit to Implicit Differentiation Schemes
Standard Explicit Schemes
From Explicit to Implicit Schemes
Advanced Implicit Schemes

4 Discussion

24 / 32 M. Omran On Implicit Image Derivatives and Their Applications



Introduction
Background

From Explicit to Implicit Differentiation Schemes
Discussion

Standard Explicit Schemes
From Explicit to Implicit Schemes
Advanced Implicit Schemes

General Implicit Scheme

Definition (General Seven-Point Stencil (Lele, 1992))

βf ′i−2 + αf ′i-1 + f ′i + αf ′i+1 + βf ′i+2

= c fi-3 − fi-3
6 + b fi+2 − fi-2

4 + a fi+1 − fi-1
2 (8)

H(ω) =
asinω + (b/2)sin2ω + (c/3)sin3ω

1+ 2αcosω + 2βcos2ω (9)

set of coefficients using empirical considerations

α = 0.5771439, β = 0.0896406,
a = 1.302566, b = 0.99355, c = 0.03750245
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Figure: Lele scheme
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Fourier-Padé-Galerkin Approximation

set of coefficients using a Fourier-Padé-Galerkin
approximation:

α =
3
5 , β =

21
200 , a =

63
50 , b =

219
200 , c =

7
125

basic idea:
goal: obtain the coefficients of
H(ω) = asinω+(b/2)sin2ω+(c/3)sin3ω

1+2αcosω+2βcos2ω
approximate the ideal derivative f (ω) = ω
use a rational Fourier series:
f (ω) ≈ Rkl(ω) = Pk(ω)/Ql(ω)
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Figure: Fourier-Padé-Galerkin Scheme
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Figure: Canny Edge Detection using various differentiation schemes: (a)
Sobel mask, (b) implicit Scharr scheme, (c) Fourier-Pade-Galerkin scheme
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Figure: Deblurring: (a) original image, (b) Gaussian blur applied (c)
using an implicit Bickley scheme (d, e) using the explicit Laplacian mask
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traditional explicit schemes flawed, introduce unwanted
smoothing, possible solutions:

1 apply smoothing in orthogonal direction
- leads to explicit filter kernels for differentiation (e.g. Sobel,
Scharr, etc.)

2 apply smoothing to derivatives
- leads to tridiagonal Pade schemes, as well as
Fourier-Pade-Galerkin schemes
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Appendix For Further Reading

For Further Reading I

S. K. Lele.
Compact finite difference schemes with spectral-like resolution.

Journal of Computational Physics, 103:16–42, 1992.

A.G. Belyaev
On Implicit Image Derivatives and their Applications.
BMVC, 2012.
A.G. Belyaev, Hitoshi Yamauchi
Implicit Filtering for Image and Shape Processing
VMV 2011: 277-283
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