

Diffusion-Based Image Compression in Steganography

Paper by Markus Mainberger, Christian Schmaltz, Matthias Berg, Joachim Weickert, Michael Backes

Frank Nedwed – 11.12.2012

Contents

Explanations Goals Algorithm Examples Evaluation <u>Out</u>look

- Explanations
- Goals/Motivation
- The algorithm
- Examples
- Evaluation
- Outlook

What is Steganography?

Explanations Goals Algorithm Examples

Evaluation

Outlook

"the practice of concealing messages or information within other non-secret text or data."

Here: hiding an image in another one (and getting it out again)

What is Diffusion?

Explanations Goals Algorithm Examples Evaluation Outlook "the spreading of something more widely"

Here: Simulating natural diffusion by partial differential equations

What is Diffusion?

Explanations Goals Algorithm Examples Evaluation Outlook "the spreading of something more widely"

Here: Simulating natural diffusion by partial differential equations

Explanations Goals Algorithm Examples Evaluation Outlook Hiding an image (or part of an image) in itself or another picture

- Without detectable traces
- In (almost) real-time
- Without significant loss of quality

Retrieving the data with a password

The algorithm (idea)

Explanations Goals Algorithm Examples Evaluation

Outlook

- 1. Choosing pixels as Dirichlet boundary
- 2. Storing them efficiently
- 3. Encrypting
- 4. Embedding them in the cover
 - 5. Recovering the secret
 - 6. Restoring the image with diffusion

1)

Choosing the right pixels

Explanations Goals Algorithm Examples

Evaluation

Outlook

- Start with a rectangle defined by the boundaries of the image/censored part
- Divide it recursively into smaller rectangles
- Save characteristic points of the resulting rectangles

Explanations Goals Algorithm Examples Evaluation

Outlook

• The resulting rectangles are compared with respect to their Laplace magnitude $\left|\Delta f_{\sigma}\right|_{i}$

such that areas with higher contrast will be sampled more accurately

the four corner pixels and the middle are saved

0

Explanations Goals Algorithm Examples Evaluation <u>Out</u>look

Explanations Goals Algorithm Examples Evaluation Outlook

Explanations Goals Algorithm Examples Evaluation Outlook •

2)

Representation

Explanations Goals Algorithm Examples

Evaluation

Outlook

- The information of the splitting process is stored as a binary tree
- The channels of the corresponding pixels are quantised to 32 values
- combined to a bitstream starting with its length

3) Encryption

Explanations Goals Algorithm Examples Evaluation Outlook For specialists:

The bitstream is encrypted by Advanced Encryption Standard (AES) in Cipher-block Chaining mode (CBC)

4) Hiding the information

Explanations Goals

Algorithm Examples

Evaluation

Outlook

Encrypted bitstream
11bit binary blocks
7bit ternary blocks

Using our password, we get a pseudorandom permutation On those positions we hide the ternary bits using mod-3 matching

4)

Hiding the information

Explanations Goals

Algorithm

Examples

Evaluation

Outlook

Mod-3 matching:

Value v, ternary bit t:

= 1 v := v - 1

$$v - t \mod 3 = 2 \quad v := v + 1$$

= 0 vert v := v

Special cases for v = {0, 1, 254, 255}

Special case: Censoring

Explanations Goals Algorithm

Examples

Evaluation

Outlook

- Needs additional information about censored area
- Boundary information improves reconstruction
- Characteristic pixels on boundaries are not saved

Recovering the image

Explanations Goals Algorithm Examples

Evaluation

Outlook

The recovered secret serves as Dirichlet boundary data for the PDE: $\partial_t u = div (D(\nabla u_\sigma) \nabla u)$

D has the two eigenvalues $\mu_1 = 1$ $\mu_2 = \frac{1}{\sqrt{1 + |\nabla u_\sigma|^2 / \lambda^2}}$

 $\lambda > 0$ is a contrast parameter

Examples/Evaluation

Explanations Goals Algorithm Examples Evaluation Outlook

400x400 grayscale Cover 20kb 768x584 RGB Secret 140kb

Diffusion process

Explanations Goals Algorithm Examples Evaluation Outlook

Examples

Explanations Goals Algorithm Examples Evaluation Outlook

160x160 RGB Cover 10kb 192x146 RGB Secret 10kb Low quality

Examples

Explanations Goals Algorithm Examples Evaluation Outlook

160x160 RGB Cover 10kb 192x146 RGB Secret 10kb High quality

Explanations Goals Algorithm Examples Evaluation Outlook

Censoring: (Original)

Explanations Goals Algorithm Examples Evaluation Outlook

Censoring: (censored cover)

Explanations Goals Algorithm Examples Evaluation Outlook

Censoring: (Reconstruction)

Explanations Goals Algorithm Examples Evaluation Outlook

768x584 RGB Secret

Comparison

Explanations Goals Algorithm Examples Evaluation Outlook

Comparison

Explanations Goals Algorithm Examples Evaluation Outlook

Evaluation

Evaluation

Explanations Goals Algorithm Examples Evaluation

Outlook

- Combines many state of the art techniques
- Protected against detection/recovering
- (almost) real-time
- High quality of the results

• Vulnerable to changes of the cover

Outlook

Explanations Goals Algorithm Examples Evaluation

Outlook

- Faster algorithms/implementations could further speed up this method
- Better choice of important pixels could improve the quality
- Extension of this method to image sequences, etc.

Explanations Goals Algorithm Examples Evaluation Outlook

Secret (10kb) Mask Cover (30kb)

Recovered secret

100 x 100 grayscale Cover

References

- Explanations
- Goals
- Algorithm
- Examples
- Evaluation
- Outlook

Try it out for yourself! http://stego.mia.uni-saarland.de/

- Mainberger, M., Schmaltz, C., Berg, M., Weickert, J., Backes, M.: Diffusion-Based Image Compression in Steganography
- Schmaltz, C., Weickert, J., Bruhn, A.: Beating the Quality of JPEG 2000 with Anisotropic Diffusion
- Oxford dictionary
- Image Processing and Computer Vision Lecture Notes 2011, J. Weickert
- An Implementation of Key-Based Digital Signal Steganography: Lecture Notes in Computer Science Volume 2137, 2001, pp 13-26
- http://compressionratings.com
- http://www.aishack.in