Image Compression Based on Spatial Redundancy Removal and Image Inpainting

Presented by Alexander Cullmann

M I ∰ A

Paper by Vahid Bastani, Mohammad Sadegh Helfroush, Keyvan Kasiri Journal of Zhejiang University-SCIENCE C (Computers & Electronics), Vol. 11, No. 2, 92–100, 2010.

・ロン ・四 と ・ 回 と しゅ

Image Compression

- Image Inpainting A Brief Introduction
- Image Inpainting as Image Compression Scheme
- Experiments and Results

< D > < B

• • = • • = •

- eliminate redundancy
- even better compression: drop some unnecessary information
- JPEG use 8x8 blocks, cosine transformation and quantization
- 8x8 blocks are source of blocking artifacts (getting more and more visible in higher compression)

How to do better?

- "normal" pictures consist of separate regions
- pixels in neighborhood are likely to be (almost) equal (high correlation)
- a lot of information is located at edges
- boundary of a region specifies not only shape but change of pixel values
- \Rightarrow boundary pixel are enough information to recalculate an image

Example: Boundary is Enough

Left: Image with tree regions; Right: Extracted edges of the same image

< D > < B

• • • • • • •

- no significant changes along edges
- pixel values at endpoints of edge sufficient to recover values at entire edge
- those endpoints are called 'source points'
- ⇒ Source Points + Shape of edges are enough information to recalculate an image

Example: Source Points and Shape are Enough

Left: Source points and boundaries; Right: Zoomed to source point

• • = • • =

- Goal: fill in missing / damaged regions in a visually plausible, non detectable way
- in general: resulting inpainted image not necessarily similar to the original
- but similarity possible if "missing" parts are chosen wise

(日)

Inpainting a Region

 ε : the boundary of the region Ω : the region to recover *D*: image domain

inpainting as boundary value problem:

$$\begin{cases} \Delta u = 0 \text{ in } \Omega \\ u = u_0|_{\mathcal{E}} \end{cases}$$

<ロト <回 > < 回 > < 三 > < 三

From Source Pixel to Boundary

ε: the boundary (to recover) Ω: the region to (finally) recover D: image domain μ_1 and μ_2 : source points Γ: boundary indicating the edge $\Gamma = \{(x_t, y_t) | x_t = f(t), y_t = g(t)\}$ $\int \frac{d^2 u}{dt^2} = 0$

$$\int u'_{\mu_1} = u_0|_{\mu_1}, u|_{\mu_2} = u_0|_{\mu_2}$$

イロト イポト イヨト イヨト

Both Steps in One Equation

let
$$\lambda(x,y) = \left\{ egin{array}{cc} 1, & (x,y) \in arepsilon \\ 0, & (x,y) \in \Omega \end{array}
ight.$$

then

$$\begin{cases} \lambda \frac{d^2 u}{dl^2} + (1 - \lambda) \Delta u = 0 \\ u|_{\mu_1} = u_0|_{\mu_1}, u|_{\mu_2} = u_0|_{\mu_2} \end{cases}$$

11.12.2012 11/24

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ ● □ ■ ● のへの

Modification In The Numerical Approach

central difference of Laplace equation: $4u_c - u_N - u_E - u_S - u_W = 0$

$$u_c = \frac{1}{8} (c_N \cdot u_N + c_E \cdot u_E + c_S \cdot u_S + c_W \cdot u_W + c_{NW} \cdot u_{NW} + c_{NE} \cdot u_{NE} + c_{SW} \cdot u_{SW} + c_{SE} \cdot u_{SE})$$

with coefficients as follows:
case
$$\lambda = 0$$
 (inside the region):

$$\begin{cases}
c_N = c_E = c_S = c_W = 2, \\
c_{NW} = c_{NE} = c_{SW} = c_{SE} = 0
\end{cases}$$
case $\lambda = 1$ (on the curve):

$$\begin{cases}
c_{t-1} = c_{t+1} = 4, \\
c_{else} = 0
\end{cases}$$

NW	Ν	NE
W	С	Е
SW	S	SE

Modification In The Numerical Approach

central difference of Laplace equation:

$$4u_c-u_N-u_E-u_S-u_W=0$$

$$u_{c} = \frac{1}{8} (c_{N} \cdot u_{N} + c_{E} \cdot u_{E} + c_{S} \cdot u_{S} + c_{W} \cdot u_{W} + c_{NW} \cdot u_{NW} + c_{NE} \cdot u_{NE} + c_{SW} \cdot u_{SW} + c_{SE} \cdot u_{SE})$$

with coefficients as follows:
case
$$\lambda = 0$$
 (inside the region):

$$\begin{cases} c_N = c_E = c_S = c_W = 2, \\ c_{NW} = c_{NE} = c_{SW} = c_{SE} = 0 \\ case \ \lambda = 1 \text{ (on the curve):} \\ c_{t-1} = c_{t+1} = 4, \\ c_{else} = 0 \end{cases}$$

NW	Ν	NE
W	С	Е
SW	S	SE

11.12.2012 12 / 24

Modification In The Numerical Approach

central difference of Laplace equation:

$$4u_c-u_N-u_E-u_S-u_W=0$$

$$u_{c} = \frac{1}{8} (c_{N} \cdot u_{N} + c_{E} \cdot u_{E} + c_{S} \cdot u_{S} + c_{W} \cdot u_{W} + c_{NW} \cdot u_{NW} + c_{NE} \cdot u_{NE} + c_{SW} \cdot u_{SW} + c_{SE} \cdot u_{SE})$$

with coefficients as follows:
case
$$\lambda = 0$$
 (inside the region):

$$\begin{cases}
c_N = c_E = c_S = c_W = 2, \\
c_{NW} = c_{NE} = c_{SW} = c_{SE} = 0 \\
case \lambda = 1 \text{ (on the curve):} \\
c_{t-1} = c_{t+1} = 4, \\
c_{else} = 0
\end{cases}$$

NW	Ν	NE
W	С	Е
SW	S	SE

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖 ■ ○ ○ ○ ○

1 = 9 Q Q

- Perona Malik filter: $\frac{\delta u}{\delta t} = div(g(\|\nabla u\|)\nabla u)$
- vanishes near eges
- increases to 1 away from egdes
- \Rightarrow smoothes without blurring edges
- \Rightarrow removes noise
- \Rightarrow increases efficiency

- specifies boundary of different regions
- should detect real transitions
- \Rightarrow Sobel
 - encoding with lossless encoder
 - as binary image

- for each edge: SP are the points by which the edges may be recovered
- SP includes at least two pixels on both sides of edge
- indicate variation in the direction perpendicular to edge
- stored row wise in an array

イロト イポト イヨト イヨト

Example: Encoding and Decoding

< D > < B

- noise removal: Jacobi iterative method, 30 iterations
- edge detection: Sobel, threshold set manually
- binary edge image encoded with JBIG algorithm
- Source Points encoded by entropy coding
- gray level images
- Pentium Celeron 1.8 GHz, 512 MB RAM, Matlab R2007b
- encoder: 4 s
- decoder: 40 s

PSNR

- peak signal-to-noise ratio
 - ratio of the squared image intensity dynamic range to the mean squared difference of the original and distored image
 - widely used
 - does not reflect human perception
 - the higher the better

SSIM • structural similarity

- ratio of four times covariance times mean to the sum of squared variances times sum of squared means
- based on the human perception
- the nearer to 1, the better

		PSNR (dB)		SSIM	
		Proposed JPEG		Proposed	JPEG
Splash	0.8 bpp	32.83	41.87	0.9748	0.9859
	0.4 bpp	30.07	36.00	0.9631	0.9579
	0.2 bpp	28.48	30.16	0.9509	0.8780
Peppers	0.8 bpp	28.30	35.40	0.9266	0.9544
	0.4 bpp	23.90	31.00	0.8513	0.8890
	0.2 bpp	20.61	36.31	0.7832	0.7593

◆□ > ◆□ > ◆三 > ◆三 > 三 = の < ⊙

Example: Splash

Left:Original image, 8 bpp; Right:top row: proposed algorithm, bottom row: JPEG left to right: 0.8 bpp, 0.4 bpp, 0.2 bpp

Alexander Cullmann

MAIA Seminar

11.12.2012 22/24

1 = 1 - 1 - C

イロト イポト イヨト イヨト

Example: Splash

Left: proposed algorithm, 0.2 bpp Right: JPEG, 0.2 bpp

Alexander Cullmann

▶ < E > < E</p>

Example: Peppers

Left:Original image, 8 bpp; Right:top row: proposed algorithm, bottom row: JPEG left to right: 0.8 bpp, 0.4 bpp, 0.2 bpp

Alexander Cullmann

MAIA Seminar

< ロ ト < 同

▶ < 토 ▶ < 토</p>

11.12.2012 23 / 24

Example: Peppers

Left: proposed algorithm, 0.2 bpp Right: JPEG, 0.2 bpp

Alexander Cullmann

11.12.2012 23 / 24

<ロト <回 > < 回 > < 三 > < 三

- new method for image compression
- high correlated regions skipped during encoding
- recovered using image inpainting
- good for high compression (1:40 !)
- details are lost, but image looks much better than JPEG

イロト イポト イヨト モヨト 正

Alo	vanc	lor (<u> </u>	ma	nn
AIC.	vanc		Juli	ma	

11.12.2012 25 / 24

Let n be a tangent vector to the curve:

$$n = \left(\frac{dx_t}{dt}, \frac{dy_t}{dt}\right) / \sqrt{\left(\frac{dx_t}{dt}\right)^2, \left(\frac{dy_t}{dt}\right)^2}$$

then the first derivative along the curve \varGamma

$$\frac{du}{dl} = \left(\frac{\delta u}{\delta x}\frac{dx_t}{dt} + \frac{\delta u}{\delta y}\frac{dy_t}{dt}\right) / \sqrt{\left(\frac{dx_t}{dt}\right)^2, \left(\frac{dy_t}{dt}\right)^2}$$

< D > < A

▶ < 토 ▶ < 토</p>