Differential Geometric Aspects in Image Processing

Dr. Marcelo Cárdenas

Classroom exercises: December 12, 2019

Problem C5.1

- i) Fixing θ gives a the radial geodesics in arc-length parametrisation.
- ii) Follows from the systems of ode's for a geodesic

$$\rho'' + \Gamma_{11}^{1}(\rho')^{2} + 2\Gamma_{12}^{1}\rho'\theta' + \Gamma_{22}^{1}(\theta')^{2} = 0 \tag{1}$$

$$\theta'' + \Gamma_{11}^2(\rho')^2 + 2\Gamma_{12}^2 \rho' \theta' + \Gamma_{22}^2 (\theta')^2 = 0 \tag{2}$$

applied to a radial geodesic $(\theta' = 0)$.

iii) From the definition of the Christoffel symbols we have that

$$\sigma_{\rho\rho} = \Gamma_{11}^1 \sigma_\rho + \Gamma_{11}^2 \sigma_\theta + L_1 N$$

Taking the scalar product with σ_{ρ} and σ_{θ} respectively we obtain

$$\Gamma_{11}^{1}E + \Gamma_{11}^{2}F = \langle \sigma_{\rho\rho}, \sigma_{\rho} \rangle = \frac{1}{2}E_{\rho}$$

$$\Gamma_{11}^{1}E + \Gamma_{22}^{2}C + \langle \sigma_{\rho\rho}, \sigma_{\rho} \rangle = \frac{1}{2}E_{\rho}$$

$$\Gamma_{11}^1 F + \Gamma_{11}^2 G = \langle \sigma_{\rho\rho}, \sigma_{\theta} \rangle = F_{\rho} - \frac{1}{2} E_{\theta}.$$

 $\Gamma^1_{11}=E_{\rho}=0$ follows from the first and $F_{\rho}=0$ from the second one.

iv) Let $\alpha(t)$ be the geodesic circle through $q \in V \setminus \{p\}$ and let $\gamma(s)$ be the radial geodesic through q in arc-length parametrisation. Then, $F(\rho, \theta) = \left\langle \frac{d\alpha}{dt}, \frac{d\gamma}{ds} \right\rangle$ for all $\rho > 0$.

Fixing
$$\theta = const$$
 we get that $\lim_{\rho \to 0} F(\rho, \theta) = \lim_{\rho \to 0} \left\langle \frac{d\alpha}{dt}, \frac{d\gamma}{ds} \right\rangle = 0$

Problem C5.2

i) The tangents of the 2D level sets u are given by $(-u_y,u_x)$, since $\overrightarrow{n}=\frac{\nabla u}{|\nabla u|}$. Moreover, since the projections of the level sets of u coincide with geodesic circles, this implies that $\Pi(\overrightarrow{t^\alpha})=c(-u_y,u_x)$

ii) Denoting $\overrightarrow{t^{\alpha}}=(T_1,T_2,T_3)$ we obtain from i) that

$$(T_1, T_2) = c(-u_y, u_x).$$

Furthermore, we have that $N=\frac{(-p,-q,1)}{\sqrt{1+p^2+q^2}}$ and $\left\langle \overrightarrow{t^{\alpha}},N\right\rangle =0.$ Therefore

$$T_3 = c(qu_x - pu_y).$$

Finally we compute the constant c s.t. $\overrightarrow{t^{\alpha}}$ is normalised. Namely $|\overrightarrow{t^{\alpha}}| = |c|(-u_y, u_x, qu_x - pu_y)| = 1$, thus $c = \sqrt{u_x^2 + u_y^2 + (qu_x - pu_y)^2}$ and the result follows.