Differential Geometric Aspects in Image Processing

Dr. Marcelo Cárdenas

Classroom exercises: December 12, 2019

Problem C5.1

Let $\sigma: U \setminus l \to V \setminus L$ be a system of geodesic polar coordinates (ρ, θ) with $p \in U \subset T_pS$. Show that

i) E = 1ii) $\Gamma_{11}^2 = 0$ iii) $\Gamma_{11}^1 = E_{\rho} = 0$ and $F_{\rho} = 0$ iv) F = 0

Problem C5.2

Let

$$\alpha_t = N \times \overrightarrow{t^{\alpha}}, \quad \alpha(\cdot, 0) = \alpha_0(\cdot)$$

be the equal distance contour propagation around some $p \in S$, with α_0 a geodesic circle. Moreover, let u be s.t. $\{(x, y) : u(x, y) = t\}$ corresponds to the 2D projection of $\alpha(\cdot, t)$.

i) Show that $\Pi(\overrightarrow{t^{\alpha}}) = c(-u_y, u_x)$ for some $c \in \mathbb{R}$, where $\Pi(x, y, z) = (x, y)$.

ii) Show that
$$\vec{t^{\alpha}} = \frac{(-u_y, u_x, qu_x - pu_y)}{\sqrt{u_x^2 + u_y^2 + (qu_x - pu_y)^2}}$$
, with $(p, q) = (\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y})$