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Beltrami Framework and Geodesic Active Contours
¢ The Beltrami framework

e multi-channel diffusion

o diffusion in HSV color space
¢ Geodesic active contours

e Euclidean geodesic active contours

o affine invariant geodesic active contours
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Beltrami Framework (1)

Beltrami Framework
¢ last week: 2d image U as manifold via
o(z,y) = (z,y,8U(z,y)) CR>, (z,9)€D
with first fundamental form

1 _(1+PUE UL,
@ =\ BU.U, 1+ B2U;

and )
01 = —m—— div ({/det Iiay) I, Vo)
t det Ty, (@,9) H(z,y)
¢ Beltrami flow for grey scale images: projection onto 3rd component:

Usa (1 + B2Uy) + Uyy (1 + B2U7) — 28°Uay Us U,

U, =
t (1+ 32Uz + B°U3)°




Beltrami Framework (2)

Beltrami Flow for Multi-Channel Images

# Consider an image U : D — R", D C R?, with k-tuples (k > 1) as values
e Colour images: k =3
e Vector fields on D: k =2

Particularly in computer science, tuples are often called vectors. We
distinguish the notions here to avoid confusion between e.g. colour images in
which the channels have no spatial meaning, and true vector fields

# o becomes a surface in R**2, e.g. in R for colour images

¢ Computation of geometric diffusion flow, and projection on those dimensions
corresponding to image data, analogous to scalar-valued images, leads to
Beltrami flow for multi-channel images

1
U = ——— div ((fdet Ty IGY, VU,) L G =1,k
T Jdeti,,, Vil Iy V0i) « 2

¢ This Beltrami flow is again a gradient descent for the surface area w.r.t. a
suitable inner product of multi-channel functions




Beltrami Framework (3)

Beltrami Flow for Multi-Channel Images, cont.

¢ Caveat: Explicit expressions become more involved, since

k k
1+ 8 ;(3mUj)2 B? ;(amUj - 0yUj)
Loy = , & = - , & )
B7 22 (0:U; - 0yU;) 1+ 57 37 (0yU5)

j=1 j=1

k
detTi, ) =1+8 Z (0:U;)% + (9,U;)%)

(Zk: )2 zk: <Zk:(azUj)(aij)>2)
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Beltrami Framework (4)

Beltrami Flow for Multi-Channel Images — Example

Removing salt-and-pepper noise (G. Rosman et al. 2000)




Beltrami Framework (5)

General Framework
¢ introduced by Kimmel, Malladi and Sochen

# relies on maps between manifolds X: ¥ — M
e (X, g) image manifold, dim X =m
e (M, h) feature space manifold

@ energy functional / measure on maps
ﬂxgwﬁmz/ﬁ%vmwmﬂmxwﬂm

e g - determinant of image metric, g”* - inverse of image metric

e Einstein summation convention: summation over indices that appear twice,
e.g.

(a,b) = q;b' = ZazbZ

e minimisation wrt. g.. gives induced metric

Guv = hij0, X0, X7




Beltrami Framework (6)

# Example 1: surface embedded in R?® with (%, g) = (R?,6;5),
(M, g) = (R, 5;;), e.g.

X(01,02) = (X' (01,02), X*(01,02), X*(01,02))

S[X] = /d20(|VX1|2 + VX322 + [VXPP)

1 0 0
¢ Example 2: 2d image as manifold, (h;;)= (0 1 0
00 p?

¢ Euler-Lagrange equations

1 ;468 1 ; ; ; k

— ' — = —9, 0,X") + T,0.X7 0, X" g""
SN GV (V99 ) + 50 g

with Christoffel symbols

;‘k = %hil(ajhkl + Oxhji — Oihjx)




Beltrami Framework (7)

Beltrami Flow for Images on Manifolds

¢ The Beltrami framework can also be used to establish edge-preserving
smoothing procedures for images painted on manifolds (e.g., surfaces with
texture)

& Consider surface i : D — R3, D C R?, and multi-channel image
U : u(D) — R” on the surface

& Construct new surface X : D — R**® by

X(o1,02) = (1, p2, p3, Ut o i, ..., Up o p) "
¢ Compute intrinsic diffusion flow for X
¢ Projection to components Uy, ..., Uy gives Beltrami flow

¢ Different projections possible:

e Project to components Uy, ..., U,: Smooth image data only
e Project to components p1, u2, 13: Smooth manifold only

e Use all components (no projection) — smoothes manifold and image data

Whether smoothing is performed for the image (texture) or manifold
(surface) or both, the smoothing process is always controlled using both
pieces of information




Beltrami Framework (8)

Beltrami Flow for Images on Manifolds — Example

Comparison of Beltrami flow and nonlinear surface diffusion. Top, left to right: Original
noisy image on left cortex surface — detail from original image — Beltrami flow, § =
0 (isotropic diffusion); Bottom, left to right: Beltrami flow, 3 = 0.1 - 8 = 0.5 —
anisotropic diffusion (N. Sochen, R. Deriche, L. Lopez Perez 2003)




Beltrami Framework (9)

HSV color space

Source: http://de.wikipedia.org/wiki/HSV-Farbraum

¢ hue: red: 0° ; green: 120° ; blue: 240°
# saturation: gives distance of the colour to the nearest grey tone

¢ value: defines how dark or bright a colour is




Beltrami Framework (10)

Beltrami operator on S*
@ S' can be described by (U, V) with U2 + V? =1
4 as manifold, two charts are needed:

e on St — {(41,0)}

1

= i

dsti = dU? + dV2dU? + (d(v/1 — U?))?

e on S* —{(0,£1)}




Beltrami Framework (11)

Diffusion on R* x S!
* image (z,y) — (z,y, H(z,y), S(z,y),V(z,y))
¢ define U = cos(H), W =sin(H)

4 we use
1 0 0 0 0
0 1 0 0 0
(h)=10 0 A@) 0 o
0 0 0 1 0
0 0 0 0 1
with A(U) = =5z (similar for W)

¢ induced metric:

(G) = 1+ AUZ+S52+V2 AUULU, + 5.5, + ViV,
I ) =\ AUYULUy + SuSy + VoV, 1+ AU)UZ + S2 + V2

# Christoffel symbols: the only nonvanishing term uses I'33

U
Fga*:ﬁ:[]h:ss




Beltrami Framework (12)

¢ resulting flow:
Us = AgU 42U —U(g"" + ¢*)
Wi = AW +2W — W(g" + ¢*%)
S, =A,S
Vi=A,V

¢ implementation: compute both U and W simultaneously, use

(U,sgn(W)V/1-U2) U*<W?
(sgn(U)V1I—W2,W) U?>W?




Beltrami Framework (13)

Example

Left: original, middle: noisy right: HSV Beltrami flow




Geodesic Active Contours: Problem Statement

Segmentation Problem
# Assume an image f: D — R, D C R? is given
¢ Problem: Find an object in this image
¢ Assumption: Object is a region delineated by a contour of sufficient contrast
¢ Interactive proceeding:
o Initialise curve with coarse data specified by the user

e Fit automatically to the precise object contour




Euclidean Geodesic Active Contours

Curve Evolution
¢ Construct curve flow ¢(p, t) initialised by user-specified contour ¢(t = 0) = co

¢ Modify curvature motion ¢; = ki by additional edge-stopping function G(f)
dependent on the given image f:

e = G(f) kit — (VG, i)

31

¢ Typical choice for edge-stopping function:

G(f) =a(IVFI*
g: nonnegative decreasing function, e.g. Perona-Malik

1

9(z*) = ——73
1+ 22/22




Euclidean Geodesic Active Contours

Level Set Evolution

¢ Equivalent level set evolution
u = G(f) [|[Vull k= (VG(f), Vu)
Vu
—||Vu||div | G 7)
IVl i (60 gty

¢ Initialisation: u(t = 0) = uo, e.g. signed distance function for user-specified
initial contour ¢y

¢ Edge-stopping function enters diffusivity in a way similar to nonlinear isotropic
diffusion

& Important difference: G depends on given image f, not on evolving u!

¢ This process is called (Euclidean) geodesic active contour evolution




Euclidean Geodesic Active Contours

Variational Interpretation

¢ Geodesic active contour evolution of a closed curve ¢ is a gradient descent for

Bold = § Gf(c(s) ds

® F¢ can be interpreted as arc-length
Eclc] Zj{ I(e(s))(Cs,c5) ds
c

of ¢ w.r.t. a Riemannian metric on D different from the standard Euclidean
metric

¢ New metric is given by the matrix

¢ Any non-trivial steady state of the evolution must therefore be a geodesic in
the image-dependent metric (hence the name “geodesic active contours”)




Euclidean Geodesic Active Contours

Existence of Solutions
¢ Consider geodesic active contour evolution in level-set formulation

¢ In a suitable function space, there exists a unique solution u(t = T') for given
ug and every T' > 0

¢ Solution satisfies maximum-minimum principle
inf(uo) < u(z,y,T) < sup(uo)
@ Solution is stable w.r.t. the initial conditions:
[u(T) = v( Tl < lluo — vollo

for all T'> 0 and initial functions g, vo




Euclidean Geodesic Active Contours

Properties

¢ In homogeneous regions, active contour evolution behaves similar to curvature
motion (moving mainly inward)

¢ Evolution stops at high gradients

¢ Initial contour should be at least to a considerable part outside the sought
object to warrant detection

Example

C A A A

Feature extraction by active contours. Left to right: Synthetic image with initial contour;
active contour at evolution times T' = 1000, 7" = 1500, 7" = 2000




Euclidean Geodesic Active Contours

Problematic Examples

7 7/ 7/
| . | . )

Euclidean active contours applied to two synthetic images. Each row, left to right:
Synthetic image with initial contour — active contour evolution at time T' = 5000 — same
at 7' = 20000




Euclidean Geodesic Active Contours

Modification of the Model

¢ Introduce an additional curve-shrinking term (v > 0)
ue = G(f) [IVu|| (k=) = (VG(f), Vu)

= |[Vu] div (G(f)Hg—Z”) —G(f) [V

& Effect: Constant shrinking force acting on the contour
@ Shrinkage of curve towards object contour is speeded up
@ Evolution is not as likely to be trapped in false optima
© Additional parameter v

© Contour tends to shrink further after object detection — stopping time
needed




Euclidean Geodesic Active Contours

Examples for the Modified Model

/4 76 ‘6 /6
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Feature extraction by active contours. Top, left to right: Synthetic image with initial
contour; active contour with v = 0.1 at evolution times T' = 200, T' = 300, T' = 500.
Bottom, left to right: 7" = 1000, 7" = 1100, 7' = 1200, T' = 1300 (after Kichenassamy
et al. 1996)




Euclidean Geodesic Active Contours

Examples for the Modified Model

Feature extraction by active contours. Top, left to right: Synthetic image with initial
contour; active contour with v = 0.1 at evolution times T' = 500, T' = 1000, T" = 1500.
Bottom, left to right: 7' = 2500, T' = 3000, T' = 4000, T' = 4000 (after Kichenassamy
et al. 1996)




Euclidean Geodesic Active Contours

Examples for the Modified Model

Feature extraction by active contours. Left to right: Photograph of Rubik cube on a
plate with initial contour — contour evolution (v = 1) at times 7' = 1400, T" = 2000
(after Kichenassamy et al. 1996)
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