
Lecture 20 M I
A

Lecture 20
� Low Dimensional Manifold Model

� Harmonic Extensions on Point Clouds: Point Integral Method

� Beltrami Flow
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Image Patch Methods M I
A

Patch Based Methods
� Non local means (Buades et. al 2005)

NL[u] =
1

C(x)

∫
Ω

exp
−(Ga∗|u(x−·)−u(y−·)|2)(0)

h2 u(y) dy,

with

C(x) =

∫
Ω

exp
−(Ga∗|u(x−·)−u(y−·)|2)(0)

h2 dy,

where Ga is a Gaussian

� many other nonlocal methods for denoising or exemplar based inpainting (Gilboa
et. al. 2009, Criminisi et. al. 2003, Arias et. al. 2011)
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Image Patch Methods M I
A

Patches and Manifolds
� for a given signal consider

M = {px(g) : x ∈ [0, 1]d, g ∈ Θ}

with Θ a signal ensemble gathering the typical data of interest, with
px(g) ∈ L2([x− δ

2, x+ δ
2]2) a patch of g centered at x

� main assumption: for natural images the set of patches (Lee et. al. 2003,
Carlsson et. al. 2008) are well approximated by low dimensional manifolds

� examples of explicit patch manifolds (G. Peyré 2009):

• manifold of smooth variations: C1 images, patches well approximated by
affine functions

• manifold of cartoon images

• manifold of locally parallel textures

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

http://www.mia.uni-saarland.de


Image Patch Methods M I
A

Manifold of Smooth Variations

Manifold of smooth images (G. Peyré 2009)
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Image Patch Methods M I
A

Manifold of Cartoon Images

Left to right: A cartoon image – A 3D representation of the edge manifold M
(depicted in 3D as a cylinder). The two curves on the manifold corresponds to patches
extracted along the two lines in the image (G. Peyré 2009)
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Image Patch Methods M I
A

locally parallel textures

Typical locally parallel texture (G. Peyré 2009)
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Low Dimensional Manifold Models M I
A

Inverse Problems
� Many image processing problems can be formalized as the recovery of an image
f from a set of noisy measurements Φf

y = Φf + ε

� Φ typically accounts for some damage to the image, for instance, blurring,
missing pixels, or downsampling

� In order to solve this ill-posed problem, one needs to have some prior knowledge
of the image

� With the help of regularizations, many image processing problems are formulated
as optimization problems, e.g.:

argmin
f

R(f) + ||y − Φf ||2L2
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Low Dimensional Manifold Models M I
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Low Dimensional Manifold Regulariser
� assume that the patches of the image are well represented by a low dimensional

manifold

� This leads to the following general for for the inverse problem (Osher et. al.
2017)

argmin
M.f∈Rn×m

dim(M(f))(x) dx subject to y = Φf + ε, P(f) ⊂M,

where P(f) are the patches of the image f.
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Low Dimensional Manifold Models M I
A

Low Dimensional Manifold Regulariser
� Lemma: Let M be a submanifold isometrically embedded in Rd. We have that

dim(M) =

d∑
j=1

||∇Mαj(x)||2.

where αi(x) = xi for all x = (x1, ..., xd) ∈M ⊂ Rd.

� Therefore, the optimisation problem can be written (Osher et. al. 2017)

argmin
M,f∈Rn×m

∫
M

d∑
j=1

||∇Mαj(x)||2dx + λ||y − Φf ||2 subject to P(f) ⊂M,

where P(f) is the set of patches of f.

� Integrating the regularisation term over the whole manifold allows for possibly
different dimensions at different parts.
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Low Dimensional Manifold Models M I
A

Iterative Method
� Basic Structure:

• With a guess of the manifold Mn and a guess of the image fn satisfying
P (fn) ⊂Mn, compute the coordinate functions αn+1

i , i = 1, ..., d, and
fn+1 solving

(αn+1
1 , ...αn+1

d , fn+1) = argmin
α,f

d∑
j=1

||∇Mαj(x)||2dx + λ||y − Φf ||2

subject to
αi(px(f

n)) = pix(f),

where pix(f) is the ith element of patch px(f)

• Update M by setting

Mn+1 = {(αn+1
1 (x), ..., αn+1

d (x)) : x ∈Mn}

• Repeat these two steps until convergence
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Low Dimensional Manifold Models M I
A

Iterative Method
� the most difficult part is to solve the following type of optimization problem:

min
u∈H1(M)

||∇Mu||2L2(M) + µ
∑
y∈P

|u(y)− v(y)|2

where u can be any αi,M =Mn, P = P(fn), and v(y) is a given function on
P.

� the solution can be obtained by solving the PDE:

∆Mu+
∑
y∈P

δ(x− y)(u(y)− v(y)) = 0, x ∈M

∂u

∂n
(x) = 0, x ∈ ∂M

where ∂M is the boundary of M and n is the outwards normal of ∂M. If M has
no boundary, ∂M = ∅.

� This PDE problem can be solved using the Point Integral Method
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Point Integral Method M I
A

Harmonic Extension on Point Clouds
� Problem (Interpolation on a point cloud in high dimensional space):

Let P = {p1, ,pn} be a set of points in Rd. Let u be a function on P with
known values only at S ⊂ P. From the given value on S, we want to recover the
value of u on the whole data set P .

� To make the problem well-posed, we assume that the point cloud P sample a
smooth manifold M embedded in Rd
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Point Integral Method M I
A

Harmonic Extension on Point Clouds
� Usually we do not known the manifold M. Assume instead that we known

weights w measuring the vicinity of points of the point cloud

� one option is to use the graph Laplacian:∑
y∈P

(w(x,y) + w(y,x))(u(x)− u(y)) = 0 x ∈ P \ S

u(x) = g(x), x ∈ S

It leads to solutions which are not continuous a the known data points
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Point Integral Method M I
A

Harmonic Extension on a Manifold
� As an alternative (Shi et. al. 2016), consider the continuous problem over a

manifold M with the squared intrinsic gradient as regulariser (measure of the
dimension):

• Let u be function defined on M known in some regions Ω1, ...,Ωk ⊂M.

• interpolate by solving

1

2
min

u∈H1(M)

∫
M
||∇Mu(x)||2 dx,

with the constraint u(x) = g(x) for all x ∈ Ω1 ∪ ... ∪ Ωk ⊂M
• leads to the mixed Dirichlet/Neumann boundary value problem

−∆Mu = 0 on M
u(x) = g(x) on ∂MD

∂u

∂η
= 0 on ∂M

with ∂MD boundary of the known data set and η the normal of M
pointing outwards.
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Point Integral Method M I
A

Point Integral Method
� Key Approximation for Laplace-Beltrami:

−
∫
M

∆Mu(y)R̄t(x,y) dy =
1

t

∫
M

(u(x)− u(y))Rt(x,y) dy

− 2

∫
∂M

∂u(y)

∂η
(g(y)− u(y))R̄t(x,y) ds(y)

with Rt(x,y) = CtR
(
|x−y|2

4t

)
, R̄t(x,y) = CtR̄

(
|x−y|2

4t

)
with R an integrable

function and R̄(r) =
∫∞
r
R(s)ds. Ct is a normalising constant of Rt

� It follows that the boundary value problem of the previous slide can be
approximated by

1

t

∫
M

(u(x)− u(y))Rt(x,y) dy − 2

∫
∂MD

∂u(y)

∂η
R̄t(x,y) ds(y) = 0

� However, we do not know ∂u(y)
∂η at ∂MD.
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Point Integral Method M I
A

Point Integral Method

� We do not know ∂u(y)
∂η at ∂MD.

� Modifying the boundary value problem to be of Robin/Neumann

−∆Mu = 0 on M

u(x) + β
∂u

∂η
= g(x) on ∂MD

∂u

∂η
= 0 on ∂M

and letting ∂u(x)
∂η = 1

β(g(x)− u((x)) on ∂MD, leads to

1

t

∫
M

(u(x)− u(y))Rt(x,y) dy − 2

β

∫
∂MD

(g(y)− u(y))R̄t(x,y) ds(y)

� Discretisation is straightforward
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Beltrami Flow M I
A

2D Images as Surfaces in 3D
� Consider image U over connected domain D ⊂ R2

� With a positive parameter β, construct the surface (image manifold)

σ(x, y) = (x, y, βU(x, y)) ⊂ R3, (x, y) ∈ D

� Idea: Use surface evolution of σ to process image data U

Representation of a grey-value image by a surface (N. Sochen, R. Deriche, L.
Lopez Perez 2003)
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Beltrami Flow M I
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The Beltrami Flow
� consider the intrinsec diffusion (mean curvature motion)

σt = ∆σσ

� keeping first two components fixed, i.e. project flow to variations of image U
alone leads to

Ut =
Uxx(1 + β2U2

y ) + Uyy(1 + β2U2
x)− 2β2UxyUxUy

(1 + β2U2
y + β2U2

y )2

the beltrami flow

� For the image U , the Beltrami flow is an edge-preserving anisotropic diffusion
flow
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Beltrami Flow M I
A

Beltrami Flow as Gradient Descent
� Consider area of surface σ(D) as energy

E[u] =

∫
D

√
det I(x,y)dxdy =

∫
D

√
1 + β2U2

x + β2U2
ydxdy

� Compute gradient descent for E w.r.t. following image-dependent inner product
for functions V,W on D :

< X,Y >=

∫
D

√
1 + β2U2

x + β2U2
yV (x, y)W (x, y)dxdy

This is the standard inner product of V and W regarded as functions on the
surface σ.

� Resulting gradient descent equals Beltrami flow for grey-value image U
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