Lecture 20

- Low Dimensional Manifold Model
- Harmonic Extensions on Point Clouds: Point Integral Method
- ♦ Beltrami Flow

Patch Based Methods

Non local means (Buades et. al 2005)

$$NL[u] = \frac{1}{C(x)} \int_{\Omega} \exp^{\frac{-(G_a * |u(x-\cdot) - u(y-\cdot)|^2)(0)}{h^2}} u(y) \, dy,$$

with

$$C(x) = \int_{\Omega} \exp^{\frac{-(G_a * |u(x-\cdot) - u(y-\cdot)|^2)(0)}{h^2}} dy,$$

where G_a is a Gaussian

 many other nonlocal methods for denoising or exemplar based inpainting (Gilboa et. al. 2009, Criminisi et. al. 2003, Arias et. al. 2011)

Patches and Manifolds

for a given signal consider

 $\mathcal{M} = \{ p_x(g) : x \in [0,1]^d, g \in \Theta \}$

with Θ a signal ensemble gathering the typical data of interest, with $p_x(g) \in L^2([x - \frac{\delta}{2}, x + \frac{\delta}{2}]^2)$ a patch of g centered at x

 main assumption: for natural images the set of patches (Lee et. al. 2003, Carlsson et. al. 2008) are well approximated by low dimensional manifolds

examples of explicit patch manifolds (G. Peyré 2009):

- \bullet manifold of smooth variations: C^1 images, patches well approximated by affine functions
- manifold of cartoon images
- manifold of locally parallel textures

Manifold of Smooth Variations

Image f

Surface \tilde{c}_f

Manifold of smooth images (G. Peyré 2009)

Manifold of Cartoon Images

Left to right: A cartoon image – A 3D representation of the edge manifold M (depicted in 3D as a cylinder). The two curves on the manifold corresponds to patches extracted along the two lines in the image (G. Peyré 2009)

locally parallel textures

Typical locally parallel texture (G. Peyré 2009)

Inverse Problems

• Many image processing problems can be formalized as the recovery of an image f from a set of noisy measurements Φf

$$y = \Phi f + \epsilon$$

- Φ typically accounts for some damage to the image, for instance, blurring, missing pixels, or downsampling
- In order to solve this ill-posed problem, one needs to have some prior knowledge of the image
- With the help of regularizations, many image processing problems are formulated as optimization problems, e.g.:

$$\operatorname*{argmin}_{f} R(f) + ||y - \Phi f||_{L^2}^2$$

Low Dimensional Manifold Regulariser

- assume that the patches of the image are well represented by a low dimensional manifold
- This leads to the following general for for the inverse problem (Osher et. al. 2017)

 $\underset{\mathcal{M}.f\in\mathbb{R}^{n\times m}}{\operatorname{argmin}}\dim(\mathcal{M}(f))(x)\,dx \quad \text{subject to} \quad y=\Phi f+\epsilon,\,\mathcal{P}(f)\subset\mathcal{M},$

where $\mathcal{P}(f)$ are the patches of the image f.

Low Dimensional Manifold Regulariser

• Lemma: Let \mathcal{M} be a submanifold isometrically embedded in \mathbb{R}^d . We have that

$$\dim(\mathcal{M}) = \sum_{j=1}^{d} ||\nabla_{\mathcal{M}} \alpha_j(\boldsymbol{x})||^2.$$

where $\alpha_i(\boldsymbol{x}) = x_i$ for all $\boldsymbol{x} = (x_1, ..., x_d) \in \mathcal{M} \subset \mathbb{R}^d$.

Therefore, the optimisation problem can be written (Osher et. al. 2017)

$$\operatorname*{argmin}_{\mathcal{M}, f \in \mathbb{R}^{n \times m}} \int_{\mathcal{M}} \sum_{j=1}^{d} ||\nabla_{\mathcal{M}} \alpha_j(\boldsymbol{x})||^2 d\boldsymbol{x} + \lambda ||\boldsymbol{y} - \Phi f||^2 \quad \text{subject to} \quad \mathcal{P}(f) \subset \mathcal{M},$$

where $\mathcal{P}(f)$ is the set of patches of f.

Integrating the regularisation term over the whole manifold allows for possibly different dimensions at different parts.

Iterative Method

- Basic Structure:
 - With a guess of the manifold M^n and a guess of the image f^n satisfying $P(f^n) \subset M^n$, compute the coordinate functions $\alpha_i^{n+1}, i = 1, ..., d$, and f^{n+1} solving

$$(\alpha_1^{n+1}, \dots, \alpha_d^{n+1}, f^{n+1}) = \underset{\boldsymbol{\alpha}, f}{\operatorname{argmin}} \sum_{j=1}^d ||\nabla_{\mathcal{M}} \alpha_j(\boldsymbol{x})||^2 d\boldsymbol{x} + \lambda ||\boldsymbol{y} - \Phi f||^2$$

subject to

$$\alpha_i(p_x(f^n)) = p_x^i(f),$$

where $p_x^i(f)$ is the ith element of patch $p_x(f)$

 $\bullet~\mbox{Update}~\ensuremath{\mathcal{M}}$ by setting

$$\mathcal{M}^{n+1} = \{(\alpha_1^{n+1}(\boldsymbol{x}), ..., \alpha_d^{n+1}(\boldsymbol{x})) : \boldsymbol{x} \in \mathcal{M}^n\}$$

• Repeat these two steps until convergence

Iterative Method

the most difficult part is to solve the following type of optimization problem:

$$\min_{u \in H^1(\mathcal{M})} ||\nabla_{\mathcal{M}} u||^2_{L^2(\mathcal{M})} + \mu \sum_{\boldsymbol{y} \in P} |u(\boldsymbol{y}) - v(\boldsymbol{y})|^2$$

where u can be any α_i , $\mathcal{M} = \mathcal{M}^n$, $P = \mathcal{P}(f^n)$, and $v(\boldsymbol{y})$ is a given function on P.

• the solution can be obtained by solving the PDE:

$$\Delta_{\mathcal{M}} u + \sum_{\boldsymbol{y} \in P} \delta(\boldsymbol{x} - \boldsymbol{y})(u(\boldsymbol{y}) - v(\boldsymbol{y})) = 0, \quad \boldsymbol{x} \in \mathcal{M}$$

 $\frac{\partial u}{\partial \boldsymbol{n}}(\boldsymbol{x}) = 0, \quad \boldsymbol{x} \in \partial \mathcal{M}$

where $\partial \mathcal{M}$ is the boundary of \mathcal{M} and \boldsymbol{n} is the outwards normal of ∂M . If M has no boundary, $\partial \mathcal{M} = \emptyset$.

This PDE problem can be solved using the Point Integral Method

Harmonic Extension on Point Clouds

Problem (Interpolation on a point cloud in high dimensional space):

Let $P = \{p_1, p_n\}$ be a set of points in \mathbb{R}^d . Let u be a function on P with known values only at $S \subset P$. From the given value on S, we want to recover the value of u on the whole data set P.

• To make the problem well-posed, we assume that the point cloud P sample a smooth manifold M embedded in \mathbb{R}^d

Harmonic Extension on Point Clouds

- Usually we do not known the manifold \mathcal{M} . Assume instead that we known weights w measuring the vicinity of points of the point cloud
- one option is to use the graph Laplacian:

$$egin{aligned} &\sum_{oldsymbol{y}\in P}(w(oldsymbol{x},oldsymbol{y})+w(oldsymbol{y},oldsymbol{x}))(u(oldsymbol{x})-u(oldsymbol{y}))&=0 \quad oldsymbol{x}\in P\setminus S \ &u(oldsymbol{x})=g(oldsymbol{x}), \quad oldsymbol{x}\in S \end{aligned}$$

Harmonic Extension on a Manifold

- As an alternative (Shi et. al. 2016), consider the continuous problem over a manifold *M* with the squared intrinsic gradient as regulariser (measure of the dimension):
 - Let u be function defined on \mathcal{M} known in some regions $\Omega_1, ..., \Omega_k \subset \mathcal{M}$.
 - interpolate by solving

$$\frac{1}{2}\min_{u\in H^1(\mathcal{M})}\int_{\mathcal{M}}||\nabla_{\mathcal{M}}u(\boldsymbol{x})||^2\,d\boldsymbol{x},$$

with the constraint $u(\boldsymbol{x}) = g(\boldsymbol{x})$ for all $x \in \Omega_1 \cup ... \cup \Omega_k \subset \mathcal{M}$

• leads to the mixed Dirichlet/Neumann boundary value problem

with $\partial \mathcal{M}_D$ boundary of the known data set and η the normal of \mathcal{M} pointing outwards.

Point Integral Method

Key Approximation for Laplace-Beltrami:

$$-\int_{\mathcal{M}} \Delta_{\mathcal{M}} u(\boldsymbol{y}) \bar{R}_t(\boldsymbol{x}, \boldsymbol{y}) \, d\boldsymbol{y} = \frac{1}{t} \int_{\mathcal{M}} (u(\boldsymbol{x}) - u(\boldsymbol{y})) R_t(\boldsymbol{x}, \boldsymbol{y}) \, d\boldsymbol{y}$$
$$-2 \int_{\partial \mathcal{M}} \frac{\partial u(\boldsymbol{y})}{\partial \eta} (g(\boldsymbol{y}) - u(\boldsymbol{y})) \bar{R}_t(\boldsymbol{x}, \boldsymbol{y}) \, ds(\boldsymbol{y})$$

with $R_t(\boldsymbol{x}, \boldsymbol{y}) = C_t R\left(\frac{|\boldsymbol{x}-\boldsymbol{y}|^2}{4t}\right), \bar{R}_t(\boldsymbol{x}, \boldsymbol{y}) = C_t \bar{R}\left(\frac{|\boldsymbol{x}-\boldsymbol{y}|^2}{4t}\right)$ with R an integrable function and $\bar{R}(r) = \int_r^\infty R(s) ds$. C_t is a normalising constant of R_t

It follows that the boundary value problem of the previous slide can be approximated by

$$\frac{1}{t} \int_{\mathcal{M}} (u(\boldsymbol{x}) - u(\boldsymbol{y})) R_t(\boldsymbol{x}, \boldsymbol{y}) \, d\boldsymbol{y} - 2 \int_{\partial \mathcal{M}_D} \frac{\partial u(\boldsymbol{y})}{\partial \eta} \bar{R}_t(\boldsymbol{x}, \boldsymbol{y}) \, ds(\boldsymbol{y}) = 0$$

• However, we do not know $\frac{\partial u(\boldsymbol{y})}{\partial \eta}$ at $\partial \mathcal{M}_D$.

Point Integral Method

- We do not know $\frac{\partial u(\boldsymbol{y})}{\partial \eta}$ at $\partial \mathcal{M}_D$.
- Modifying the boundary value problem to be of Robin/Neumann

$$egin{aligned} & -\Delta_{\mathcal{M}} u = 0 & ext{on} & \mathcal{M} \\ u(m{x}) + eta rac{\partial u}{\partial \eta} = g(m{x}) & ext{on} & \partial \mathcal{M}_D \\ & & rac{\partial u}{\partial \eta} = 0 & ext{on} & \partial \mathcal{M} \end{aligned}$$

and letting $\frac{\partial u(\boldsymbol{x})}{\partial \eta} = \frac{1}{\beta}(g(\boldsymbol{x}) - u((\boldsymbol{x})) \text{ on } \partial \mathcal{M}_D$, leads to

$$\frac{1}{t} \int_{\mathcal{M}} (u(\boldsymbol{x}) - u(\boldsymbol{y})) R_t(\boldsymbol{x}, \boldsymbol{y}) \, d\boldsymbol{y} - \frac{2}{\beta} \int_{\partial \mathcal{M}_D} (g(\boldsymbol{y}) - u(\boldsymbol{y})) \bar{R}_t(\boldsymbol{x}, \boldsymbol{y}) \, ds(\boldsymbol{y})$$

Discretisation is straightforward

Beltrami Flow

2D Images as Surfaces in 3D

- \blacklozenge Consider image U over connected domain $D \subset \mathbb{R}^2$
- With a positive parameter β , construct the surface (image manifold)

$$\sigma(x,y) = (x,y,\beta U(x,y)) \subset \mathbb{R}^3, \quad (x,y) \in D$$

lacksim Idea: Use surface evolution of σ to process image data U

Representation of a grey-value image by a surface (N. Sochen, R. Deriche, L. Lopez Perez 2003)

Beltrami Flow

The Beltrami Flow

consider the intrinsec diffusion (mean curvature motion)

$$\sigma_t = \Delta_\sigma \sigma$$

 \blacklozenge keeping first two components fixed, i.e. project flow to variations of image U alone leads to

$$U_t = \frac{U_{xx}(1+\beta^2 U_y^2) + U_{yy}(1+\beta^2 U_x^2) - 2\beta^2 U_{xy} U_x U_y}{(1+\beta^2 U_y^2 + \beta^2 U_y^2)^2}$$

the beltrami flow

 For the image U, the Beltrami flow is an edge-preserving anisotropic diffusion flow

Beltrami Flow as Gradient Descent

• Consider area of surface $\sigma(D)$ as energy

$$E[u] = \int_D \sqrt{\det \mathbf{I}_{(x,y)}} dx dy = \int_D \sqrt{1 + \beta^2 U_x^2 + \beta^2 U_y^2} dx dy$$

 Compute gradient descent for E w.r.t. following image-dependent inner product for functions V, W on D :

$$< X,Y> = \int_D \sqrt{1+\beta^2 U_x^2+\beta^2 U_y^2} V(x,y) W(x,y) dx dy$$

This is the standard inner product of V and W regarded as functions on the surface $\sigma.$

Resulting gradient descent equals Beltrami flow for grey-value image U

References

- A.B. Lee, K. S. Pedersen, D. Mumford, The Nonlinear Statistics of High-Contrast Patches in Natural Images, International Journal of Computer Vision, 2003
- A. Criminisi, P. Perez, K. Toyama, Object removal by exemplar-based inpainting, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003
- A. Buades, B. Coll, J.M. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling and Simulation, 2005
- G. Carlsson, T. Ishkhanov, V. De Silva, A. Zomorodian, On the Local Behavior of Spaces of Natural Images, International journal of computer vision, 2008
- G. Gilboa, S. Osher, Nonlocal Operators in Image Processing, Multiscale Modeling and Simulation, 2009
- P. Arias, G. Facciolo, V. Caselles, G. Sapiro, A variational framework for exemplar-based image inpainting, International journal of computer vision, 2011
- S. Osher, Z. Shi, Wei Zhu, Low Dimensional Manifold Model for Image Processing, Siam Journal on Imaging Sciences, 2017
- Z. Shi, J. Sun, M. Tian, Harmonic extension on point cloud, MathSciDoc:1609.19003, 2016.

Image f

Surface \tilde{c}_f

