
Lecture 19 M I
A

Lecture 19
� Surface Inpainting

� Polynomial Finite Elements

� Patch Manifolds

� Low Dimensional Manifold Model
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Surface Inpainting M I
A

Image Inpainting
� Consider an image with missing data (greyvalue/color values known only at a

subset of pixels)

� Problem: reconstruct the whole image using only the known data

� Example: use homogeneous diffusion to inpaint the missing pixels by means of
solving the boundary value problem

∆u = 0 on Ω \K
u = f on K

∂u

∂ν
= 0 on ∂Ω

with K the set of known data

� Other choices for the inpainting the mising data: biharmonic inpainting, edge
enhancing diffusion, exemplar-based inpainting
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Surface Inpainting M I
A

Inpainting Based Compression
� basic procedure:

• select a sparse subset of the image pixels

• encode the image by storing only the selected pixels

• decode the image using inpainting

� given an inpainting strategy (e.g. homogeneous linear inpainting) main
difficulties:

• select a subset of pixel which can be efficiently encoded

• the inpainted image should be close to the original image
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Surface Inpainting M I
A

Inpainting Based Compression

Left to right: Original image – Set of known data – Result of homogeneous diffusion
inpainting
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Surface Inpainting M I
A

Inpainting Based Surface Compression
� store only a subset of the given surface

� recover the missing data with an inpainting procedure

� in case the surface is given by a triangulation we store a subset of the vertices

� in (Bae et. al. 2010) the inpainting is done solving the linear geometric diffusion
equation

σt = ∆S(t)u on S(t)×]0,∞[

σ = σk on ∂S(t)×]0,∞[

S(0) = S0

where S0 is some initial guess and σk is the known data
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Surface Inpainting M I
A

Surface Compression
� mean curvature operator leads to point singularities. Solution (Bae et. al.
2010): inpaint first the unknown data , then also at the positions of the known
data

� other possible solutions: use higher order operators for the inpainting, use
anisotropic diffusion

� in case of higher order operators, higher degree polynomial are better suited than
piece-wise affine functions as basis for finite elements
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Surface Inpainting M I
A

Surface Compression

Left to right: Input surface – inpainted surface with linear geometric diffusion –
inpainted surface with modification (Bae et. al. 2010)
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Finite Elements Polynomial Approximations M I
A

The Finite Element
� (K,P,N ) is called a finite element if

• K ⊂ Rn is a simply connected bounded open set with piece-wise smooth
boundary the (element domain)

• P is a finite-dimensional space of functions defined on K the (space of
shape functions)

• N = {N1, ..., Nk} the (nodal variables) is a basis for P ′ (the dual of P)

� A basis of P, {P1, ..., Pk}, is a nodal basis if it is dual to N , namely

Ni(Pj) = δij.

Here δij = 1 if i = j and 0 otherwise
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Finite Elements Polynomial Approximations M I
A

The Finite Element
� Lemma: Let P be a k-dimensional linear space of functions on Rn. Then
N1, N2, ..., Nk is a basis for P if and only if the following holds:

Given that v ∈ P and Ni(v) = 0 for i = 1, ..., k, then v = 0

� Lemma: Suppose that P is a polynomial of degree d ≥ 1 that vanishes on
{x : L(x) = 0} where L is a non-degenerate linear function. Then we can write
P in the factorised form P = LQ where Q is a polynomial of degree (d− 1).
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Finite Elements Polynomial Approximations M I
A

The Interpolant
� Let (K,P,N ) be a finite element with nodal basis {ψi : 1 = 1, ...k}. The local

interpolant is given by

IK(v) =

k∑
i=1

Ni(v)ψi

� A subdivision of the computational domain is a finite collection of open sets Ki

s.t.

• Ki ∩Kj = if i 6= j

• ∪iK̄i = Ω̄

� Assume Ω has a subdivision T of finite elements. The global interpolant is given
by

Ih(v)|Ki = IKi(v) ∀Ki ∈ T
with h e.g. the largest diameter of all finite elements.
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Finite Elements Polynomial Approximations M I
A

Continuity
� In the absence of further conditions on the subdivision it is not possible to assert

the continuity of the global interpolant

� Lemma: Given a triangulation T of Ω it is possible to choose edge nodes for the
corresponding elements, such that the global interpolant Ih(v) belongs to C0(Ω̄)
for all v ∈ Cm(Ω), where m = 0 for Lagrange elements (Nodal points given by
function values) and m = 1 for Hermite elements (Nodal points given by
function values and derivatives).
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Product Manifolds M I
A

Product Manifolds
� Let M and N be two manifolds of dimensions m and n

� The product manifold M ×N := {(x, y) x ∈M,y ∈ N} is a manifold of
dimension m+ n.

� charts can be constructed by taking products maps of charts of M,N
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Image Patch Methods M I
A

Patch Based Methods
� Non local means (Buades et. al 2005)

NL[u] =
1

C(x)

∫
Ω

exp
−(Ga∗|u(x−·)−u(y−·)|2)(0)

h2 u(y) dy,

with

C(x) =

∫
Ω

exp
−(Ga∗|u(x−·)−u(y−·)|2)(0)

h2 dy,

where Ga is a Gaussian

� many other nonlocal methods for denoising or exemplar based inpainting (Gilboa
et. al. 2009, Criminisi et. al. 2003, Arias et. al. 2011)
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Image Patch Methods M I
A

Patches and Manifolds
� create a patch ensemble from a given image f : Ω→ R: for each point x ∈ Ω

consider a patch L2([−δ2,−
δ
2]2)

� main assumption: for natural images the set of patches (Lee et. al. 2003,
Carlsson et. al. 2008) are well approximated by low dimensional manifolds

� examples of explicit patch manifolds (G. Peyré 2009):

• manifold of smooth variations: C1 images, patches well approximated by
affine functions

• manifold of cartoon images

• manifold of locally parallel textures
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Image Patch Methods M I
A

Manifold of Smooth Variations

Manifold of smooth images (G. Peyré 2009)
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Image Patch Methods M I
A

Manifold of Cartoon Images

Left to right: A cartoon image – A 3D representation of the edge manifold M
(depicted in 3D as a cylinder). The two curves on the manifold corresponds to patches
extracted along the two lines in the image (G. Peyré 2009)
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Image Patch Methods M I
A

locally parallel textures

Typical locally parallel texture (G. Peyré 2009)
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Low Dimensional Manifold Models M I
A

Inverse Problems
� Many image processing problems can be formalized as the recovery of an image
f from a set of noisy measurements Φf

y = Φf + ε

� Φ typically accounts for some damage to the image, for instance, blurring,
missing pixels, or downsampling

� In order to solve this ill-posed problem, one needs to have some prior knowledge
of the image

� With the help of regularizations, many image processing problems are formulated
as optimization problems, e.g.:

argmin
f

R(f) + ||y − Φf ||2L2
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Low Dimensional Manifold Models M I
A

Low Dimensional Manifold Regulariser
� assume that the patches of the image are well represented by a low dimensional

manifold

� use the low dimensional property as a regulariser for the inverse problem:

argmin
M.f

∫
M

dim(M(f))(x) dx+ λ||y − Φf ||2L2
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