Lecture 18

Lecture 18
¢ Self-adjoint Problem
® Error Analysis
® Parabolic Equations

€ Diffusion on Surfaces
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Finite Elements

Variational Formulation for the Self-adjoint Case

® In the special case when the boundary value problem is self-adjoint, i.e.
CLZ'J'(ZC) = ajz-(a:) and bz($) =0

Vz € € the biliner functional a(-,-) becomes symmetric.

# In this case we define the quadratic functional J : H}(2) :— R given by

J(v) = %a(v,v) — l(v).

® Proposition: If a(-,-) is symmetric bilinear, the (unique) weak solution is the
unique minimiser of J over Hj(Q).

® Proposition: Conversely, let u minimise J over H;(Q) then u is the (unique)
solution of the weak boundary value problem.
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Finite Elements

Variational Formulation for the Self-adjoint Case

® |n the special case when the boundary value problem is self-adjoint, i.e.
CLij(ZB) = ajz-(a:) and bz(:c) =0

Vz € € the biliner functional a(-,-) becomes symmetric.

® In this case we define the quadratic functional J : H}(2) :— R given by

J(v) = %a(v, v) — l(v).

Finite dimentional case:
® Finding a weak solution uy, of
find wup €Vy st a(up,vn) =1l(vy) Yo € Vy
corresponds to the minimisation of J over V},, i.e

J(up) = 521‘% J(u)
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Finite Elements

Assembly of the Stiffness Matrix

Example:

® Let Q) C R? and consider

—Au=f on {
u=0 on 00

® Let Q) be a bounded polygonal domain in the plane, subdivided into M triangles
s.t. any pair intersect only along a complete edge, at a vertex or not at all.

® Let V), be the continuous piecewise linear functions v, defined on such a
triangulation s.t. v;, = 0 on 09X

® wu,, is characterised as the unique minimiser over V}, of the functional

I =5 [ e )P+ [ f@pona)
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Finite Elements

Assembly of the Stiffness Matrix
® Writing

N
va(z,y) =Y Vigi(z,y)
i=1

with V; the value at (x;,y;), ¢; the continuous piecewise linear basis function

associated with this node and /N the number of internal nodes of (2, the problem
becomes

1

find argmin-V'AV —-V'F,
VERN 2

with global stiffness matrix

Ay;j:/QV@(SU,y)Vfbj(i’?,y)

with global load vector

P — /Q F(@,y)di(z, )
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Finite Elements

Assembly of the Stiffness Matrix

® The individual contribution to the functional of single triangles

/|Vvh$y Z/|Vvha:y
Q

can be computes as

/K Von(e, y)[2 = [VE, VI, VE] - Ax - [V, VE, VET

® cach A is an element stiffness matrix. Here V¥ represent the the value of v, at
the node of the triangle K with position vector r; = (x;,9;) 1 = 1,2, 3.

€ \We have that

| g —73)* (ro —r3)(r3—1rl) (ro —1r3)(r1 — o)
Ak:4A |7“1—7“3|2 (7“3—7”1)(7“1—7“2)
123 symm : ry — 7o?

with Aqi53 the area of the triangle.
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Finite Elements

Assembly of the Stiffness Matrix

® et 1,2..., N index the inner nodes and N + 1, N + 2, ..., N* index the boundary
nodes. Then

N*
1=1

with V; =0 for j =N +1,...,N*.

® The full stiffness matrix can be assembled by
M
A* — ZLkAk(Lk)T,
k=1

where L* are appropriate N* x 3 boolean matrices

® Once A* is known, we erase the last N* — N rows and columns of A to obtain
the global stiffness matrix A (analogous procedure for F)



http://www.mia.uni-saarland.de

Finite Elements

Error Analysis

® consider again the general elliptic boundary problem of the previous lecture. How

can we measure if uy € V3, is a good approximation of the weak solution
u e Hi(Q)?

® The Galerkin orthogonality

a(u — up,vp) =0 Yo, € Vy

leads to

¢ Lemma (Céa's Lemma): The finite element approximation uy, to u € H} (), is
the near-best fit to u in the norm || - ||H5(Q), ie.

C1

[lu = unll g1 () < c—ovf}flei‘f}h lu = onll g1 (0)
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Weak Formulation of PDEs

Other Boundary Conditions

Example: Mixed Boundary Conditions

—Au=f x€Q
u=0 xely
ou
g T
8V g T € 2

With f c LQ(Q),g € LQ(FQ) and 0f2 = Fl U FQ
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Parabolic Equations

Parabolic Equations

® Consider the initial value problem

ou(z,t) — Au(z,t) = f(x,t) x € QCR?
u(z,t) =0 €0, 0<t<T
u(0,x) = up(x) x € Q,

® Being ¢; basis correspoding to the nodes of a triangulation and using the
representation

N
un(x,t) =Y &i(t)¢i(x)
i=1
the weak problem becomes finding the coefficients &;(t) s.t.
(1) + M5 = b(t), >0 £(0)=n

with M;; = (¢4, ¢j) L2() the mass matrix, S the stiffness matrix and b the load

vector and Zf\le n:¢;(x) is an approximation of g
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Surface Diffusion

Example: Anisotropic Surface Diffusion

¢ Given an initial compact embedded surface M embedded in R3, compute a
family of sufaces M(t);>o with corresponding coordinate mappings x(t) s.t.

0x — divpy(acVmmyx) = f on {t >0} x M(¢)
M(0) = My

where the diffusion tensor a. is supposed to be a symmetric, positive definite,
linear mapping on the tangent space 17, M

® in weak formulation

/ 90t96+/ g(acV s X(t), Vae)0) :/ 0f(t)
M(t) M(t) M(t)

VO € C°(M(t)) with g the metric of M (t).
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Surface Diffusion

Example: Anisotropic Surface Diffusion

® The space discrete problem is to find a family of discrete successively smoothed
and sharpened surfaces M (t) with coordinate maps X (t), the weak formulation
IS

/ 00, X (1) + / 9(aeV sty (61X (), V ag, (10) = / Of(t)
My (1) My (t) Mp(t)

® a2 backwards Euler scheme leads to (Clarez et. al. 2000)
(M™ 4 7L (AM) X" = M X" + 7 M"F™

for the new vertex positions X"*1 at time t"*! = 7(n + 1).
Here M is the mass matrix

M;}:/ O, P,
M

n
h

and
Ly = / gAY (P4, V@)
Mi,
the nonlinear stiffness matrix with linear nodal basis {®;}
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