Lecture 17

- Weak Solutions of PDEs
- Introduction to Finite Elements
- Variational Formulations: Self-Adjoint Case

 $|\Delta\rangle$

Weak Soultions

- up to now we have assumed that the PDEs we considered have smooth coefficients/solutions
- what if we are dealing with a PDE which has initial data (boundary data), or coefficients which are not smooth, e.g.

$$\begin{aligned} -\Delta u = & \text{sgn}(\frac{1}{2} - |x|) & \text{in } \Omega \\ u = & \text{in } \partial \Omega \end{aligned}$$

with $\Omega = (-1,1) \times (-1,1) \subset \mathbb{R}^2$

In multiply by a smooth compact supported function ϕ and integrate by parts

$$\int_{\Omega} \nabla u \nabla \phi = \int_{\Omega} \mathrm{sgn}(\frac{1}{2} - |x|) \phi$$

this expression makes sense even if u is not twice differentiable

1

2

3

4

5

6

7

8

g

Classical solutions

• Consider the homogeneous Dirichlet boundary value problem over a bounded open domain $\Omega \subset \mathbb{R}^n$ (here $\overline{\Omega}$ denotes its closure)

$$-\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + \sum_{i=0}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} + uc(x) = f(x) \quad in \quad x \in \Omega$$
$$u(0,x) = 0 \quad in \quad x \in \partial\Omega$$

with $a_{i,j} \in C^1(\overline{\Omega}), b_i, c, f \in C(\overline{\Omega})$ and $\exists \tilde{c} > 0$ s.t.

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \ge \tilde{c}\sum_{i=1}^{n} |\xi_i|^2$$

for all $x \in \overline{\Omega}, (\xi_1, ..., \xi_n) \in \mathbb{R}^n$ (uniform ellipticity).

- A function $u \in C^2(\Omega) \cap C(\overline{\Omega})$ solving the problem is called classical solution
- What if the coefficients are not smooth? we consider weak solutions

Weak solutions

• Let $a, b, c \in L^{\infty}(\Omega)$ and $f \in L^{2}(\Omega)$. A function $u \in H_{0}^{1}(\Omega)$ satisfying

$$\sum_{i,j=1}^{n} \int_{\Omega} a_{ij}(x) \frac{\partial u}{\partial x_j} \frac{\partial v}{\partial x_i} + \sum_{i=0}^{n} \int_{\Omega} b_i(x) \frac{\partial u}{\partial x_i} v + \int_{\Omega} c(x) uv = \int_{\Omega} f(x) v \quad (1)$$

 $\forall v \in H_0^1(\Omega)$, is called a weak solution of the homogeneous Dirichlet boundary value problem (here all the derivatives are understood in the weak sense).

classical solutions are also a weak solution but the converse is not true

Existence of a weak solution

The weak formulation can be written as

$$\mbox{find} \quad u \in H^1_0(\Omega) \quad \mbox{s.t.} \quad a(u,v) = l(v) \quad \forall v \in H^1_0(\Omega)$$

with the notation

$$a(w,v) = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij}(x) \frac{\partial w}{\partial x_j} \frac{\partial v}{\partial x_i} + \sum_{i=0}^{n} \int_{\Omega} b_i(x) \frac{\partial w}{\partial x_i} v + \int_{\Omega} c(x) w v$$
$$l(v) = \int_{\Omega} f v$$

 $|\Delta\rangle$

(2)

Existence of a weak solution

Proposition: Assuming that

$$c(x) - \frac{1}{2} \sum_{i=1}^{n} \frac{\partial b_i}{\partial x_i} \ge 0, \qquad \forall x \in \bar{\Omega},$$

there existence a unique weak solution $u \in H_0^1(\Omega)$ for the homogeneous Dirichlet boundary value problem (1), equiv. (2). This is a consequence of the general result:

- **Theorem (Lax Milgram):** Let V be a real Hilbert space with norm $|| \cdot ||_V$. Let $a(\cdot, \cdot)$ be a bilinear functional on $V \times V$ and $l(\cdot)$ a linear functional s.t.
 - i) $\exists c_0 > 0, \ a(v,v) \ge c_0 ||v||_V^2$
 - ii) $\exists c_1 > 0, \ a(v, w) \le c_1 ||v||_V ||w||_V$
 - iii) $\exists c_2 > 0, \ l(v) \le c_2 ||v||_V$

for all $v, w \in V$

1

2

3

4

5

6

7

8

9

Weak solutions: Example

• The problem

$$-\Delta u = \operatorname{sgn}(\frac{1}{2} - |x|) \quad x \in \Omega$$
$$u = 0 \quad x \in \partial \Omega$$

does not have a classical solution but does have a weak solution $u \in H_0^1(\Omega)$.

Basic Procedure

First step is to convert the problem into its weak formulation:

find
$$u \in V$$
 s.t. $a(u, v) = l(v) \quad \forall v \in V$

where \boldsymbol{V} is the solution space

Then replace V by a finite-dimensional subspace $V_h \subset V$ associated with a subdivision given by a discrete representation of the domain Ω and consider

find
$$u_h \in V_h$$
 s.t. $a(u_h, v_h) = l(v_h) \quad \forall v_h \in V_h$

e.g. V_h the continuous piece-wise polynomial functions of a fixed degree w.r.t. a triangulation of the domain

• If $dim(V_h) = N(h)$ and $V_h = span\{\phi_1, \phi_2, ..., \phi_{N(h)}\}$ the problem is to find $U_1, ..., U_{N(h)} \in \mathbb{R}$ s.t.

$$\sum_{i=1}^{N(h)} a(\phi_i, \phi_j) U_j = l(\phi_j) \qquad j = 1, ..., N(h)$$

Example

Consider the boundary value problem

$$-(p(x)u')' + q(x)u = f(x), \quad x \in (0,1)$$
$$u(0) = 0, \ u(1) = 0$$

where $p \in C[0,1], q \in C[0,1], f \in L^2(0,1)$ with $p(x) \ge \tilde{c} > 0$ and $q(x) \ge 0$ for all x in [0,1].

• The weak formulation is given by: find $u \in H_0^1(0,1) := H_0^1((0,1))$ such that

$$\int_0^1 p(x)u'(x)v'(x) + \int_0^1 q(x)u(x)v(x) = \int_0^1 f(x)v(x)$$

for all $v \in H_0^1(0,1)$

we can approximated the solution with continuous piece-wise linear functions using a uniform subdivision if the interval $\bar{\Omega} = [0, 1]$

Finite Elements

Variational Formulation for the Self-adjoint case

In the special case when the boundary value problem is self-adjoint, i.e.

 $a_{ij}(x) = a_{ji}(x)$ and $b_i(x) = 0$

 $\forall x \in \overline{\Omega}$ the biliner functional $a(\cdot, \cdot)$ becomes symmetric.

• In this case we define the quadratic functional $J: H^1_0(\Omega) : o \mathbb{R}$ given by

$$J(v) = \frac{1}{2}a(v,v) - l(v)$$

• **Proposition:** If $a(\cdot, \cdot)$ is symmetric bilinear, the (unique) weak solution is the unique minimiser of J over $H_0^1(\Omega)$.

• **Proposition:** Conversely, let u minimise J over $H_0^1(\Omega)$ then u is the (unique) solution of the weak boundary value problem.

Other Boundary Conditions

Example: Mixed Boundary Conditions

$$egin{aligned} -\Delta u &= f \quad x \in \Omega \ u &= 0 \quad x \in \Gamma_1 \ rac{\partial u}{\partial
u} &= g \quad x \in \Gamma_2, \end{aligned}$$

With $f \in L^2(\Omega), g \in L^2(\Gamma_2)$ and $\partial \Omega = \Gamma_1 \cup \Gamma_2$