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® Surfaces Smoothing
® Diffusion of Surfaces
® Finite Elements: Weak Solutions of PDEs
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Surface Smoothing Problem

Problem Statement
® Measured surface data, e.g., originating from 3D laser scanning
® Data are noisy
® Goal: Denoise these data

® |mage processing ideas can in principle be used
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Geometric Diffusion of Surfaces

Surface Mean Curvature Motion

® Given by the surface evolution
Ot — 2Hﬁ
with H = (k1 4 k2)/2, the mean curvature

® Let function U : Q x [0,T] — R, Q C R give a level set representation:

e Mean curvature motion is equivalent to the 3D evolution

Uy = 2H||VU||

e Level set formulation can be rewritten into

VU
U, = |VU||div (—)
= | Il

7 7=

Remark: Here :
|VU]|

is the surface normal pointing inwards, thus
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Geometric Diffusion of Surfaces

Surfaces Mean Curvature Motion, Equivalences

® Equivalent description of the image evolution as smoothing along level sets
Up = Uge + Uy

where &(x,y, 2),n(x,y, z) L VU (x,y, z) are orthogonal unit vectors
(@, y,2) Ln(x,y,2)

® Equivalent reformulation of surface evolution as smoothing of surface coordinates

Ot = Oyu T Ovo

if 0,0, are unit vectors and o, L o,

® Equivalent variational description: gradient descent for surface area

Elo] = /SdS = Area(S)
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Geometric Diffusion of Surfaces

Mean Curvature Motion as Geometric Diffusion
Process

€® Mean curvature motion can be formulated as

O't(U(), Vo, tO) — O-uu(u(b Vo, tO) + Oyov (UO, Vo, tO)
if the surface evolution is parametrised such that o (ug, vg, tg) and o, (ug, vg, to)
are orthogonal unit vectors

® Using the intrinsic differential operators on o, this can be written as
oy = Ago
I.e. linear diffusion of Note that this evolution acts channel-wise:

0750'2' = AsO'Z',?: — 1, 2,3

@ In this context, mean curvature motion is therefore also denoted as (linear)
geometric diffusion

® Note that this process is linear and isotropic as intrinsic diffusion of the surface
but is anisotropic within the surrounding space R?
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Geometric Diffusion of Surfaces

Geometric Diffusion: Examples

Left to right: Noisy octahedron smoothed by mean curvature motion noisy
Stanford bunny smoothed by mean curvature motion (Clarenz, Diewald, Rumpf 2000)
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Geometric Diffusion of Surfaces

Isotropic Nonlinear Image Diffusion
uy = div(g(|Vu,|?)Vu) in  Q
u(,0)=f in

ou ,

with u, is a slightly Gaussian smoothed version of u and v is the outer unit normal at
the boundary of {2

® |Vu,|* works like a fuzzy edge detector

¢ diffusivity g is decreasing in |Vu,|?, e.g.

® gaussian smoothing inside the diffusivity leads to a well-posed parabolic PDE
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Geometric Diffusion of Surfaces

Isotropic Nonlinear Geometric Diffusion

L 4

L 4

Analogously to diffusion of image data, a diffusivity function can be introduced
into the geometric diffusion equation

The diffusivity function should suppress diffusion depending on the geometric
structure of the surface

Parameters of the diffusivity function should be geometric invariants. The
relevant invariants describing the geometric structure of the surface are the
principal curvatures k1, ko

The resulting isotropic nonlinear geometric diffusion reads in its basic form
oy = divg(g(k1,k2)Vg0)

(i.e., (9,50'1' = di?]s (g(lﬁll, HQ)VSO};) ,i = 1, 2, 3)

Scalar-valued function g should be decreasing w.r.t. curvatures
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Geometric Diffusion of Surfaces

Isotropic Nonlinear Geometric Diffusion

® To reduce sensitivity to noise and improve stability, one can let the diffusivity
depend on a pre-smoothed surface 6 = o, which is e.g. the result of a short
period of linear geometric diffusion

5. =Ag5, (t=0)=o0

® Resulting evolution:
oy = divg(g(k1(0), k2(6))Vg0o)

® Possible diffusivity function (Clarenz et al. 2000) is g = G (\/k% + k%) where:

1
L |s| > 60X,

G(s) = (1-6)222
1 otherwise

® )\ serves as a threshold value for the identification of edges and mean curvature
motion is done for A6 < 0
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Geometric Diffusion of Surfaces

Level Set Formulation of Isotropic Nonlinear
Geometric Diffusion

¢ Consider function U : Q@ - R, Q C R?

® |sotropic nonlinear geometric diffusion of the level sets of U reads

0= VUi ga2), o)) e )

® Corresponding natural boundary condition:

g1 (5), ma(5)) Gy = 0.

with 7/ outer normal over 99
® Applications:
e Implementation of surface smoothing without parametrisation of surfaces
e Smoothing of volume data

® Simplified pre-smoothing: Specifically in the level-set framework, the
geometrically " correct” geometric pre-smoothing is often replaced by the simpler
linear 3D diffusion. Since the pre-smoothing parameter small, the difference in
results is small
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Geometric Diffusion of Surfaces

Anisotropic Nonlinear Images Diffusion

® anisotropic diffusion takes into account the direction of the local structure of the
Image

® this cannot be achieved with a scalar-valued diffusivity ¢

® g is replaced by a positive definite symmetric 2 X 2 matrix, the diffusion tensor D:
ou = div(DVu)

® the local image structure specifies the eigenvectors and eigenvalues of D
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Geometric Diffusion of Surfaces

Anisotropic Nonlinear Images Diffusion
Example: Edge Enhancing Diffusion

up = div(D(Vu,)Vu) in
u(+,0)=f in
(D(Vu,)Vu,v) =0 in 0N
with u, i1s a slightly Gaussian smoothed version of u and v the unit normal at the
boundary of (2
® the diffusion tensor D is chosen s.t.
e its normalised eigenvectors v1, vy satisfy v1||Vu, and v L Vu,
e the corresponding eigenvalues are A\; = g(|Vu,|?) and Ay =1

® the eigenvectors v1, v and their eigenvalues A1, Ay determine the diffusion
tensor:
D(V’U,p) = )\1’1)1’01— -+ )\2’1)2’();
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Geometric Diffusion of Surfaces

Anisotropic Nonlinear Geometric Diffusion

® Introducing anisotropic diffusion tensor allows different diffusivities parallel and
perpendicular to edges

® Diffusion tensor depends on curvatures and curvature directions of pre-smoothed
surface

® For example (Clarenz et al. 2000):

_ . G(kp,l) 0 T
D =a, .—C( 0 G(kp,2)>c

with G like in slide 9, k, 1, %, 2 are the principal curvatures of the smoothed
surface o, = ¢ and C is matrix of its principal curvature

® Resulting anisotropic nonlinear geometric diffusion

oy = div(D(6)Vgo)
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Geometric Diffusion of Surfaces

Anisotropic Nonlinear Geometric Diffusion

® |[eads to the definition of a generalised mean curvature
H,, = tr(a,)

the a, — mean curvature

® if o is a solution of the anisotropic equation, then

iArea(a(t)) = — HH,,
dt O'(t)
dVol( (2)) H
- o(t)) = — .
dt O'(t) P

which reflects one smoothing aspect of the model
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Geometric Diffusion of Surfaces

Level Set Formulation of Nonlinear Geometric
Diffusion

® | evel set form: -
U, = ||VU|| div (D(ﬁ)—)
t VU]

where U is pre—smoothed function
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Geometric Diffusion of Surfaces

Geometric Diffusion Examples

Left to right: A noisy octahedron surface, smoothed by isotropic nonlinear 3D

diffusion (Perona-Malik model), mean-curvature motion, and anisotropic geometric
diffusion (U. Clarenz, U. Diewald, M. Rumpf 2000)



http://www.mia.uni-saarland.de

Geometric Diffusion of Surfaces

Denoising by Anisotropic Nonlinear Geometric
Diffusion Examples

Top: Evolution of a noisy octahedron under anisotropic geometric diffusion.
Bottom: Same with colour-coded principal curvature (T. Preusser, M. Rumpf 2002)
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Geometric Diffusion of Surfaces

Geometric Diffusion Examples

Left to right: Noisy Stanford bunny, smoothed by mean-curvature motion, by

anisotropic geometric diffusion, with colour-coded principal curvature (U. Clarenz, U.
Diewald, M. Rumpf 2000)
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Geometric Diffusion of Surfaces

Denoising by Anisotropic Nonlinear Geometric
Diffusion Examples

Top left: Noisy 3D scan image of a sculpture. Top row, to right: Filtered by
anisotropic geometric diffusion, threshold A = 10, pre-smoothing p = 0.02, at
evolution times 17" = 0.0002, T = 0.0004, T = 0.0006, T = 0.0008. Bottom: Same
filtered surfaces as above, with colour-coded principal curvatures (U. Clarenz, U.
Diewald, M. Rumpf 2000)
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Weak Formulation of PDEs: Motivation

Weak Soultions

® up to now we have assumed that the PDEs we considered have smooth
coefficients/solutions

® what if we are dealing with a PDE which has initial data (boundary data), or
coefficients which are not smooth, e.g.

1
—Au:sgn(§—|x|) in

u=0 1in 00X

with Q = (=1,1) x (—=1,1) C R?

® multiply by a compact supported function ¢ and integrate by parts

/Q VUV = /Q san(s — [])6

® this expression makes sense even if u is not twice differentiable: we need to
introduce appropriate functional spaces where the solutions of such equations live
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Elements of Functional Analysis

Banach Spaces
® let (E,||.||g) be a normed linear real vector space

® (v,)nen is a Cauchy sequence in E if

Ve M, suchthat Vp,q ||v, —v4llE <€

® (E.||.||g) is a Banach space if it is complete: all its cauchy sequences converge
to an element in £

¢ Examples: RY, continuous function on a closed domain C()...
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Elements of Functional Analysis

Hilbert Spaces
® let F be a linear real vector space having a scalar product (-, ) g

® F'is a Hilbert space if it is a Banach space with the norm defined by the scalar
product, i.e. ||v||g = (v,v)E

® Examples: RY, sequences (vp)nen such that Y, |vn]? < co...



http://www.mia.uni-saarland.de

Elements of Functional Analysis

Functional Spaces
® let QO C RY, some functional spaces:

e k—times continuous differentiable functions:

ou
ox;

Ck(Q) = {ueC(Q) cC(Q), 1 gz'gN}

e functions with compact support
Cy(2) = {u € C*() : u has compact support in 2}

e [P lebesgue integrable functions:

—{us [ 111 < o0}

¢ [P for 1 < p < oo are Banach spaces with norm || f||zrq) = UQ |f|p]
L?(Q) is a Hilbert space with (f,q) L2(Q) = fQ fag

D=

. Also,
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Elements of Functional Analysis

Sobolev Spaces

® let f € L1(Q), g is the weak partial derivative, gj, of f if

[ 150 == [0 voecr@

Remark: If f has classic derivatives they coincides with the weak.

® Sobolev spaces are defined

WP = {u c () : 2

; LP()),1<i<N
@ 1<i<N |,

the functions in LP having weak derivatives in LP.

@ For the case p = 2 we denote () := W2(Q) is a Hilbert space with the
scalar product

(f,g)Hl(Q)ZLfg+LVfV9
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Elements of Functional Analysis

Sobolev Spaces

® We have convergence of a sequence of elements (u,,,) in a Banach space FE to an
element u., € E whenever

lm ||tup — Uso||E =0
m—00

® [H;(Q) is the set of all u € H'(Q) such that u is the limit in H'(Q) of a
sequence U, with u,, € C§°(£2).
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Elements of Functional Analysis

Useful Inequalities

¢ The Cauchy-Schwarz inequality: Let u and v belong to L*(Q) then u, v
L'(Q) and
HU”UHLl(Q) < ||U||L2(Q)HU||L2(Q)

¢ (Poincaré-Friedrichs inequality) Suppose that () is a bounded open set in R"
(with a sufficiently smooth boundary 92) and let u € H}(£2) then there exists a
constant c,, independent of u, such that

/Q |u(:v)\2da: < ¢y zzn;/Q

ou
oz, (z)

2
dx



http://www.mia.uni-saarland.de

References

References

¢ U. Clarenz, U. Diewald, M. Rumpf: Anisotropic geometric diffusion in surface
processing. |[EEE Visualization 2000

® T. Preuer, M. Rumpf: A level set method for anisotropic geometric diffusion in
3D image processing. SIAM J. Applied Mathematics, 2002



http://www.mia.uni-saarland.de
















	First page
	Lecture 16
	Surface Smoothing â•ﬁ Problem
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Geometric Diffusion of Surfaces
	Weak Formulation of PDEs: Motivation
	Elements of Functional Analysis
	Elements of Functional Analysis
	Elements of Functional Analysis
	Elements of Functional Analysis
	Elements of Functional Analysis
	Elements of Functional Analysis
	References
	Last page

