Lecture 15

- Laplace-Beltrami Operator
- Diffusion on Surfaces
- Heat Method for Geodesic Distances

Riemannian Metric in Local Parametrisation

- Let $\sigma: D \to \sigma(D)$ be a local parametrisation of $S \subset \mathbb{R}^M$ around $\sigma(x) = p$
- Let g be the metric on S induced by the Euclidean space of \mathbb{R}^M . Then

$$g(v,w) = \sum_{i,j=1}^{n} g_{i,j} v_i w_j := \sum_{i,j=1}^{n} \left\langle \frac{\partial \sigma}{\partial x_i}, \frac{\partial \sigma}{\partial x_j} \right\rangle v_i w_j$$

for all $v = \sum v_i \partial_i \sigma$ and $w = \sum w_i \partial_i \sigma$.

The Intrinsic Gradient

For $f: S \to \mathbb{R}$: and $p \in S$,

• $\mathsf{D}f(p)(v) := \frac{d}{dt}f(\gamma(t))|_{t=0}$ for some $\gamma: I \to S$, s.t. $\gamma(0) = p, \gamma'(0) = v$, is well defined (does not depend on γ)

• There exists a unique element $abla_S f \in T_p S$ s.t.

 $g(\nabla_S f(p), v) = \mathsf{D} f(p)(v)$

for all $v \in T_pS$. This intrinsec gradient is given by

$$\nabla_S f = \sum_{i=1}^N a_i \partial_i \sigma, \quad \text{with} \quad a_i = \sum_{j=1}^N g^{i,j} \frac{\partial (f \circ \sigma)}{\partial x_j}$$

with $(g^{i,j})_{1 \leq i \leq N}$ the inverse matrix of $(g_{i,j})_{1 \leq i \leq N}$.

The Intrinsic Divergence

• If f is defined over S and $\sigma: D \to S$ are local coordinates (local chart)

$$\int_{\sigma(D)} f \, dS = \int_D f \sqrt{|g|} \, dx$$

• We have that the intrinsec divergence of a vector field $V = \sum_{i=0}^{N} w_i \partial_i \sigma$

$$div_S V := \frac{1}{\sqrt{|\det g|}} \sum_{i=1}^N \frac{\partial}{\partial x_i} (w_i \sqrt{|\det g|})$$

$$\int_{S} f \, div_{S} V \sqrt{|\det g|} dx = -\int_{S} g(\nabla_{S} f, V) \sqrt{|\det g|} \, dx$$

equivalently

$$\int_{S} f \, div_{S} V \, dS = -\int_{S} g(\nabla_{S} f, V) \, dS$$

for all f with compact support ($f \circ \sigma$ with compact support on D).

Laplace-Beltrami Operator

• The Laplace Beltrami operator of a function $f: S \to \mathbb{R}$ in local coordinates $\sigma: D \to S, D \subset \mathbb{R}^N$, is given by

$$\Delta_S f := div_S(\nabla_S f) = \frac{1}{\sqrt{|\det g|}} \sum_{i,j=1}^N \frac{\partial}{\partial x_i} \left(\sqrt{|\det g|} g^{i,j} \frac{\partial f}{\partial x_j} \right)$$

Laplace-Beltrami Operator on Surfaces

Relation to Embedding Space \mathbb{R}^3

• Define f in \mathbb{R}^3 volume around S. The projection of \mathbb{R}^3 gradient $\nabla_3 f$ to tangential space $T_p S$ equals intrinsic gradient (*Id* is the identity matrix):

$$\nabla_S f = \left(I_d - \overrightarrow{n} \, \overrightarrow{n}^\top \right) \nabla_3 f$$

Local Coordinates

$$\nabla_S f = D_{\sigma} (\mathbf{I}^{-1} \nabla (f \circ \sigma))$$
$$div_S V = \frac{1}{\sqrt{\det \mathbf{I}}} div (\sqrt{\det \mathbf{I}} (D\sigma)^+ V \circ \sigma)$$

where $D\sigma^+$ is the pseudoinverse of D_{σ} .

Example: Linear Diffusion on a Surface

- Consider surface $\sigma: D \to S \subset \mathbb{R}^3$ and a function (image data) U on $\sigma(D)$
- Linear diffusion (heat flow) equation

$$U_t = \Delta_S U$$

This is a gradient descent for the energy

$$E[U] := \frac{1}{2} \int_{S} ||\nabla_{S} U||^{2} dS$$

- General result on linear diffusion: On a compact Riemannian manifold, the heat equation for given initial data has a unique solution which satisfies a maximum-minimum principle.
 - Maximum-minimum principle: If at t=0 one has $U_1\leq U(\cdot,t)\leq U_2$, then $U_1\leq U(\cdot,t)\leq U_2$ for all t
 - Compact domain: necessary for maximum-minimum principle also satisfied for standard case of plain rectangular image with reflecting boundary conditions

Example: Linear Diffusion on a Surface

Left to right: Noisy image on surface and two stages of linear diffusion smoothing on the surface at progressive times (Bertalmo et al. 2001)

Implicit Surfaces

- Main assumption: Level set representation of the surface $S = \{x \in \mathbb{R}^3 : \psi(x) = 0\}$ and the data U is defined in a band surrounding it
- There are different techniques to arrive at an implicit representation from a triangulation:

e.g. solving Hamilton Jacobi equation $||\nabla\psi||=1$

• Same for an extension of initial data: e.g. s.t. it is constant normal to each level set of ψ . Namely s.t. $\langle \nabla U, \nabla \psi \rangle = 0$. This can obtained by the steady state of

$$\frac{\partial U}{\partial t} + sign(\psi) \left< \nabla U, \nabla \psi \right> = 0$$

Heat Flow on Implicit Surfaces

- Let S is the zero level set of ψ and U be defined on a neighborhood of S.
- Linear diffusion (heat flow) equation $U_t = \Delta_S U$ is a gradient descent for the energy

$$E[U] := \frac{1}{2} \int_{S} ||\nabla_S U||^2 dS.$$

We embed the energy E in \mathbb{R}^3 by defining

$$\tilde{E}[U] := \frac{1}{2} \int_{\Omega \subset \mathbb{R}^3} ||P_{\nabla \psi} \nabla U||^2 \delta(\psi) ||\nabla \psi|| dx,$$

where δ is the delta of Dirac and $P_{\overrightarrow{v}} = \left(I_d - \frac{\overrightarrow{v} \overrightarrow{v}^{\top}}{||\overrightarrow{v}||^2}\right)$, is the projection to the plane $\perp \overrightarrow{v}$.

• **Proposition:** The gradient descent of \tilde{E} is given by

$$\frac{\partial U}{\partial t} = \frac{1}{||\nabla \psi||} \operatorname{div} \left(P_{\nabla \psi} \nabla U ||\nabla \psi|| \right)$$

Heat Flow on Implicit Surfaces

- \blacklozenge The flow is locally independent of the embedding function ψ
- \blacklozenge If ψ is the signed distance function the gradient descent simplifies to

$$\frac{\partial U}{\partial t} = div(P_{\nabla\psi}\nabla U)$$

• Gradient descent of \tilde{E} corresponds to computing the Laplace-Beltrami operator for S in implicit form

Nonlinear Diffusion on Surfaces

lacksim Nonlinear isotropic diffusion in \mathbb{R}^2

 $U_t = div(g(||\nabla U_\rho||^2 \nabla U))$

with nonnegative diffusivity function g applied to gradient of possibly presmoothed image $U_{\rho}=U\ast K_{\rho},$ with K_{ρ} Gaussian

Example: TV flow

$$g(||\nabla U||^2) = \frac{1}{||\nabla U||}$$

 Translating divergence and gradient into the corresponding intrinsic expressions gives

$$U_t = div_S\left(\frac{\nabla_S U}{||\nabla_S U||}\right)$$

Nonlinear Diffusion on Surfaces: Implicit Surface

• Embedding of surface TV into \mathbb{R}^3 is given by

$$\frac{\partial U}{\partial t} = \frac{1}{||\nabla \psi||} div \left(\frac{P_{\nabla \psi} \nabla U}{||P_{\nabla \psi} \nabla U||} ||\nabla \psi|| \right)$$

Can be obtained as the gradient descent of

$$\frac{1}{2} \int_{\Omega \subset \mathbb{R}^3} ||P_{\nabla \psi} \nabla U|| \delta(\psi) ||\nabla \psi|| dx$$

or by directly computing the PDE in implicit form

Nonlinear Diffusion on Surfaces

Left to right: Noisy image on surface and two stages of nonlinear isotropic diffusion smoothing on the surface (TV diffusivity) at progressive times (Bertalmo et al. 2001)

Diffusion of Directional Data on Surfaces

• Assume we have data of the form $U: S \to \mathbb{S}^2$. We want to minimize an energy of the form $\int_S ||\nabla_S U||^p dS.$

The gradient descent of this energy is given by the coupled system of PDEs

$$\frac{\partial U_i}{\partial t} = div_S \left(||\nabla_S U||^{p-2} \nabla_S U_i \right) + U_i ||\nabla_S U||^p, \quad i = 1, 2$$

ullet Embedding S into the zero level set of ψ we obtain the gradient descent flows

$$\frac{\partial U_i}{\partial t} = \frac{1}{||\nabla \psi||} div \left(\frac{P_{\nabla \psi} \nabla U_i}{||P_{\nabla \psi} \nabla U||^{2-p}} ||\nabla \psi|| \right) + U_i ||P_{\nabla \psi} \nabla U||^p, \quad i = 1, 2.$$

Fundamental Solution of Linear Surface Diffusion

Consider linear diffusion equation on surface

 $U_t = \Delta_S U, \quad U(t=0) = U_0$

• For any T > 0, solution is given by

$$U(P,T) = \int_{S} U_0(Q) H(P,Q,T) dQ$$

H is called fundamental solution or heat kernel for the surface diffusion

• Special case: In \mathbb{R}^d , the fundamental solution is given by $U(t=T) = G_{\sqrt{2T}} * U_0$

Short Time Solution of Linear Diffusion on Surfaces

 For small T, the fundamental solution of linear surface diffusion is approximated by

$$H(P,Q,T) \approx K(P,Q,T) := \frac{1}{4\pi T} \exp{-\frac{\rho(P,Q)^2}{4T}}$$

where $\rho(P,Q)$ is a smooth function with range $\mathbb{R}\cup\{+\infty\}$ such that

$$\begin{split} \rho(P,Q) &= d(P,Q), & d(P,Q) \leq \delta/2 \\ \rho(P,Q) &= +\infty, & d(P,Q) \geq \delta \end{split}$$

and δ is the injectivity radius (where the exponential map is injective)

 Short-time kernel method for the computation of surface diffusion: Use K to approximate H

Remarks:

1. K(P,Q,T) is a generalised and smoothly cut-off Gaussian on the surface

2. The true fundamental solutions H for all T can be computed via a series expansion whose first member is K

Distances on Surfaces

- ◆ Idea: use heat kernel to compute geodesic distances between points
- drawbacks: only accurate for small t, sensitive to noise

Heat kernel, here u_t , and compute distance function, (K. Crane et al. 2013)

Distances on Surfaces

Alternative solution (K. Crane et al. 2013)

- geodesics have constant speed
- magnitude of the heat kernel is irrelevant
- Algorithm:
 - **1.** Solve $U_t = \Delta_S U$, for fixed $t, U_0 = \delta_p$
 - **2.** Compute $-\frac{\nabla U}{||\nabla U||}$
 - **3.** Solve poisson equation $\Delta_S \Phi = divX$

 $\Phi(q)$ approximates the geodesic distance between p and q

Distances on Surfaces

Bunny mesh with increasing time parameter t, (K. Crane et al. 2013)

• Larger values for t lead to smoother, more inaccurate solutions

References

- K. Crane, C. Weischedel, M. Wardetzky: Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow. ACM Transactions on Graphics 32(5),
- M. Bertalmío, L.-T. Cheng, S. Osher, G. Sapiro: Variational problems and partial differential equations on implicit surfaces. Journal of Computational Physics 174:759–780, 2001

