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Lecture 14

€ Geodesics and Curve Evolutions
® Hamilton Jacobi Equations

® |aplace-Beltrami Operator
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Equal Distance Contours

Equal Distance Contour

® Given a source area K C S. We want to find a curve evolution s.t. the graph of
a(-,t)is {p € S : ds(p, K) = t}, the equal distance contour of distance ¢

® Consider the general evolution

?

a; =N xt% «alu,0) = ag(u)

¢ Lemma: The curve B(t) := a(u,t)|u=v, is a geodesic
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Equal Distance Contours

Equal Distance Contours
® Proposition: The equal distance contour evolution of an initial curve ug is given
by
o= N x 1% a(-,0) = ug(")

are the tangent unit vector of the equal distance contours «a(-,t)

?

where ¢

® Given a source area K we can find the equal distance contours
{pe€ S :ds(p, K) =t} choosing uy with graph equal to the boundary of K

® |f source is a point choose K to be a small circle around the point
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Equal Distance Contours

2D Projection

4

4

Implementing directly an evolution of a 3D curve is quite cumbersome. We are
interested is the projection II of this 3D curve in the zy plane.

Proposition: The projected equal distance contour evolution is given by

Ce=VNT  co=0n(K) (1)
where
VN:@,MX;@»:¢<l+q>m+<l+p> — 2pgruny
14 p? + ¢?
with p = ,q and = (n1,no9)

This means that

VN = \/a,n% + bn% — cnina,

where a, b, ¢c depend on the surface gradient and can be computed once at the
start
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Equal Distance Contours

Level Sets Propagation

¢ Lemma: Consider a function v : U C R? — R whose level sets correspond to
equal distance contours. Then

(uw(l + C]2) T pquy7 uy(l + p2) _ pquw)

II(N x tj) =
\/(1 +p? + ¢?)(uz + uZ + (quz — pug)?)

and the 2D curve evolution

Gy = _TI(N x 18) = _ (allt q*) — pquy, uy(1 + p*) — pquy) 2)

@+ 0? + a2 (02 + ul + (qus — pus)?)
can be used to compute geodesic paths

Consequences:

ﬁ_Vu

® The proposition in slide 4 follows using 7 = ~Vul

® We can first compute u and then solve this evolution to compute the paths of
geodesics
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Equal Distance Contours

Hamilton Jacobi Equations

® Computing the evolution of the equal distance contours corresponds to solving

(14 q2)u926 + (1 + p2)u§ — 2pqu

Vul? =V =
| | N 1_|_p2_|_q2

with boundary condition given by u = 0 at the source 0K, where p = %, qg= g—?'j

® |n other words the Hamilton Jacobi equation with hamiltonian H given by

H(ug,uy) = (14 ¢H)uz + (1 + p2)u§ — 2pquguy, — (14 p* + ¢*) = 0.
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Equal Distance Contours

Hamilton Jacobi Equations
Summing up:
® We compute u as the solution of the Hamilton Jacobi equation of Slide 6

® Afterwards, we compute the path of a geodesic from a given point using the
evolution (2) of Slide 5
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Finding Minimal Paths Between Sets

Finding minimal paths
® let AC S and My(x,y) :=ds((z,y, z(x,y)), A)

Lemma: All minimal paths between K, D C S are given by the set

G :={(z,y,2(x,y)) : Mg(z,y) +Mp(z,y) = gm}

where g,,, = min(, (Mg + Mp)

® |let ag, ap denote distance contour evolutions starting from 0K, 0D
respectively.

Lemma: The tangential points of ax(u,t) and ap(@,t) for t +t = g,, generate
the minimal paths from p; to ps. i.e. lie on a constant parameter
u = ug(u = Ug) of the propagating curve ax(u,t)(ap(u,t))
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Laplace-Beltrami Operator

Riemannian Metric in Local Parametrisation
® let pc S CRM and ¢ be a local parametrisation around p with ¢(z) = p
¢ Consider the basis of 7},S, {0; := g—i(x) |1 <i< N}

¢ Consider the Riemmanian metric g on S induced by the Euclidean space of RM
(The first fundamental form in the case of a surface: M =3, N = 2).

¢ Lemma: At 7,,S we have that

g(v,w) =Y gi jviw;

i,J=1

for all v = > v;0; and w = w;0;. where

_ (9% 06N\ _ 5 5.
gz,j - <(9a7@’ ax3> T <817aj>
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Laplace-Beltrami Operator

The Gradient Over a Surface
¢ In RY, we have (Vf(z),v) = Df(x)(v), for all v € RY
® Lemma: For a function f: S - R :

) Df(p)(v) :== Gf(7(t))]e=o for some v : I — S, s.t. 4(0) = p,~'(0) = v, is
well defined (does not depend on )

ii) There exists a unique element Vf € T,,S s.t.

9(Vf(p),v) =Df(p)(v)
for all v € T),S. It is given by
N N

Vf = Z a;0; with a; = Zgz’ja(f OQb)

i=1 j=1

with (¢"7)1<i<n the inverse of (g; ;)1<i<n and ¢ local parametrisation.
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Laplace-Beltrami Operator

The Divergence of a Vector Field

@ For a vector field in RY and a function f with compact support (zero outside a
compact set)

/RN F div(V)dz = — /RN (VI V) de (3)

® |f f is defined over S and ¢ : U — S are local coordinates

fdsszfde

o(U)

e Thus (3) transforms in the case of a surface into

/S f divg(V)/[det gldz = — [5 9(Vof, V)y/[detg] da

for f with compact support, and we get

Vi/|det g|)

di%(V)

\/\detg Z&’I%
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Laplace-Beltrami Operator

Laplace-Beltrami Operator

® The Laplace Beltrami operator of a function f : .S — R in local coordinates
¢:U — S, UCRY, is given by

Apf = divg(Vef) = ! f: a( | det g @?ﬂ'ﬁ)
LT el T et g| A= N9 oz,

i,j=1 J
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