
Lecture 14 M I
A

Lecture 14
� Geodesics and Curve Evolutions

� Hamilton Jacobi Equations

� Laplace-Beltrami Operator
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Equal Distance Contours M I
A

Equal Distance Contour
� Given a source area K ⊂ S. We want to find a curve evolution s.t. the graph of
α(·, t) is {p ∈ S : ds(p,K) = t}, the equal distance contour of distance t

� Consider the general evolution

αt = N ×
−→
tα, α(u, 0) = α0(u)

� Lemma: The curve β(t) := α(u, t)|u=u0 is a geodesic
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Equal Distance Contours M I
A

Equal Distance Contours
� Proposition: The equal distance contour evolution of an initial curve u0 is given

by

αt = N ×
−→
tα α(·, 0) = u0(·)

where
−→
tα are the tangent unit vector of the equal distance contours α(·, t)

� Given a source area K we can find the equal distance contours
{p ∈ S : ds(p,K) = t} choosing u0 with graph equal to the boundary of K

� If source is a point choose K to be a small circle around the point
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Equal Distance Contours M I
A

2D Projection
� Implementing directly an evolution of a 3D curve is quite cumbersome. We are

interested is the projection Π of this 3D curve in the xy plane.

� Proposition: The projected equal distance contour evolution is given by

Ct = VN
−→n c0 = ∂π(K) (1)

where

VN =
〈−→n ,Π(N ×

−→
tα)
〉

=

√
(1 + q2)n2

1 + (1 + p2)n2
2 − 2pqn1n2

1 + p2 + q2
,

with p = ∂z
∂x, q = ∂z

∂y and −→n = (n1, n2)

� This means that

VN =
√
an2

1 + bn2
2 − cn1n2,

where a, b, c depend on the surface gradient and can be computed once at the
start
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Equal Distance Contours M I
A

Level Sets Propagation
� Lemma: Consider a function u : U ⊂ R2 → R whose level sets correspond to

equal distance contours. Then

Π(N ×
−→
tα) =

(ux(1 + q2)− pquy, uy(1 + p2)− pqux)√
(1 + p2 + q2)(u2x + u2y + (qux − pux)2)

and the 2D curve evolution

C̃t = −Π(N ×
−→
tα) = − (ux(1 + q2)− pquy, uy(1 + p2)− pqux)√

(1 + p2 + q2)(u2x + u2y + (qux − pux)2)
(2)

can be used to compute geodesic paths

Consequences:

� The proposition in slide 4 follows using −→n = ∇u
|∇u|

� We can first compute u and then solve this evolution to compute the paths of
geodesics
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Equal Distance Contours M I
A

Hamilton Jacobi Equations
� Computing the evolution of the equal distance contours corresponds to solving

|∇u|2 = V 2
N =

(1 + q2)u2x + (1 + p2)u2y − 2pquxuy

1 + p2 + q2
.

with boundary condition given by u = 0 at the source ∂K, where p = ∂z
∂x, q = ∂z

∂y

� In other words the Hamilton Jacobi equation with hamiltonian H given by

H(ux, uy) = (1 + q2)u2x + (1 + p2)u2y − 2pquxuy − (1 + p2 + q2) = 0.
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Equal Distance Contours M I
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Hamilton Jacobi Equations
Summing up:

� We compute u as the solution of the Hamilton Jacobi equation of Slide 6

� Afterwards, we compute the path of a geodesic from a given point using the
evolution (2) of Slide 5
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Finding Minimal Paths Between Sets M I
A

Finding minimal paths
� Let A ⊂ S and MA(x, y) := dS((x, y, z(x, y)), A)

Lemma: All minimal paths between K,D ⊂ S are given by the set

G := {(x, y, z(x, y)) : MK(x, y) + MD(x, y) = gm}

where gm = min(x,y)(MK + MD)

� Let αK, αD denote distance contour evolutions starting from ∂K, ∂D
respectively.

Lemma: The tangential points of αK(u, t) and αD(ũ, t) for t̃+ t = gm generate
the minimal paths from p1 to p2. i.e. lie on a constant parameter
u = u0(ũ = ũ0) of the propagating curve αK(u, t)(αD(ũ, t̃))
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Laplace-Beltrami Operator M I
A

Riemannian Metric in Local Parametrisation
� Let p ∈ S ⊂ RM and φ be a local parametrisation around p with φ(x) = p

� Consider the basis of TpS, {∂i := ∂φ
∂xi

(x) | 1 ≤ i ≤ N}

� Consider the Riemmanian metric g on S induced by the Euclidean space of RM
(The first fundamental form in the case of a surface: M = 3, N = 2).

� Lemma: At TpS we have that

g(v, w) =

n∑
i,j=1

gi,jviwj

for all v =
∑
vi∂i and w = wi∂i. where

gi,j =

〈
∂φ

∂xi
,
∂φ

∂xj

〉
= 〈∂i, ∂j〉
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Laplace-Beltrami Operator M I
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The Gradient Over a Surface
� In RN , we have 〈∇f(x), v〉 = Df(x)(v), for all v ∈ RN

� Lemma: For a function f : S → R :

i) Df(p)(v) := d
dtf(γ(t))|t=0 for some γ : I → S, s.t. γ(0) = p, γ′(0) = v, is

well defined (does not depend on γ)

ii) There exists a unique element ∇f ∈ TpS s.t.

g(∇f(p), v) = Df(p)(v)

for all v ∈ TpS. It is given by

∇f =

N∑
i=1

ai∂i, with ai =

N∑
j=1

gi,j
∂(f ◦ φ)

∂xj

with (gi,j)1≤i≤N the inverse of (gi,j)1≤i≤N and φ local parametrisation.
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Laplace-Beltrami Operator M I
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The Divergence of a Vector Field
� For a vector field in RN and a function f with compact support (zero outside a

compact set) ∫
RN

f div(V )dx = −
∫
RN
〈∇f, V 〉 dx (3)

� If f is defined over S and φ : U → S are local coordinates∫
φ(U)

f dS =

∫
U

f
√
|g| dx

• Thus (3) transforms in the case of a surface into∫
S

f divφ(V )
√
|det g|dx = −

∫
S

g(∇φf, V )
√
|det g| dx

for f with compact support, and we get

divφ(V ) =
1√
|det g|

N∑
i=1

∂

∂xi
(Vi
√
|det g|)
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Laplace-Beltrami Operator M I
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Laplace-Beltrami Operator
� The Laplace Beltrami operator of a function f : S → R in local coordinates
φ : U → S, U ⊂ RN , is given by

∆φf := divφ(∇φf) =
1√
|det g|

N∑
i,j=1

∂

∂xi

(√
|det g| gi,j ∂f

∂xj

)
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