Lecture 14

- Geodesics and Curve Evolutions
- Hamilton Jacobi Equations
- Laplace-Beltrami Operator

Equal Distance Contour

- Given a source area $K \subset S$. We want to find a curve evolution s.t. the graph of $\alpha(\cdot, t)$ is $\{p \in S : d_s(p, K) = t\}$, the equal distance contour of distance t
- Consider the general evolution

$$\alpha_t = N \times \overrightarrow{t^{lpha}}, \quad \alpha(u,0) = \alpha_0(u)$$

• Lemma: The curve
$$eta(t) := lpha(u,t)|_{u=u_0}$$
 is a geodesic

Equal Distance Contours

• **Proposition:** The equal distance contour evolution of an initial curve u_0 is given by

$$\alpha_t = N \times \overrightarrow{t^{\alpha}} \quad \alpha(\cdot, 0) = u_0(\cdot)$$

where $\overrightarrow{t^{lpha}}$ are the tangent unit vector of the equal distance contours $lpha(\cdot,t)$

- Given a source area K we can find the equal distance contours $\{p \in S : d_s(p, K) = t\}$ choosing u_0 with graph equal to the boundary of K
- If source is a point choose K to be a small circle around the point

2D Projection

- Implementing directly an evolution of a 3D curve is quite cumbersome. We are interested is the projection Π of this 3D curve in the xy plane.
- **Proposition:** The projected equal distance contour evolution is given by

$$C_t = V_N \overrightarrow{n} \qquad c_0 = \partial \pi(K)$$
 (1)

where

$$V_N = \left\langle \overrightarrow{n}, \Pi(N \times \overrightarrow{t^{\alpha}}) \right\rangle = \sqrt{\frac{(1+q^2)n_1^2 + (1+p^2)n_2^2 - 2pqn_1n_2}{1+p^2+q^2}},$$

with
$$p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}$$
 and $\overrightarrow{n} = (n_1, n_2)$

This means that

$$V_N = \sqrt{an_1^2 + bn_2^2 - cn_1n_2},$$

where a, b, c depend on the surface gradient and can be computed once at the start

Level Sets Propagation

• Lemma: Consider a function $u: U \subset \mathbb{R}^2 \to \mathbb{R}$ whose level sets correspond to equal distance contours. Then

$$\Pi(N \times \vec{t^{\alpha}}) = \frac{(u_x(1+q^2) - pqu_y, u_y(1+p^2) - pqu_x)}{\sqrt{(1+p^2+q^2)(u_x^2 + u_y^2 + (qu_x - pu_x)^2)}}$$

and the 2D curve evolution

$$\tilde{C}_t = -\Pi(N \times \vec{t}^{\alpha}) = -\frac{(u_x(1+q^2) - pqu_y, u_y(1+p^2) - pqu_x)}{\sqrt{(1+p^2+q^2)(u_x^2 + u_y^2 + (qu_x - pu_x)^2)}}$$

can be used to compute geodesic paths

Consequences:

• The proposition in slide 4 follows using $\overrightarrow{n} = \frac{\nabla u}{|\nabla u|}$

 We can first compute u and then solve this evolution to compute the paths of geodesics 1

2

3

4

5

6

7

8

9

10

11

(2)

Hamilton Jacobi Equations

Computing the evolution of the equal distance contours corresponds to solving

$$|\nabla u|^2 = V_N^2 = \frac{(1+q^2)u_x^2 + (1+p^2)u_y^2 - 2pqu_x u_y}{1+p^2+q^2}$$

with boundary condition given by u = 0 at the source ∂K , where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$

In other words the Hamilton Jacobi equation with hamiltonian H given by

$$H(u_x, u_y) = (1+q^2)u_x^2 + (1+p^2)u_y^2 - 2pqu_x u_y - (1+p^2+q^2) = 0.$$

I

Hamilton Jacobi Equations

Summing up:

- \blacklozenge We compute u as the solution of the Hamilton Jacobi equation of Slide 6
- Afterwards, we compute the path of a geodesic from a given point using the evolution (2) of Slide 5

Finding minimal paths

• Let $A \subset S$ and $\mathbb{M}_A(x, y) := d_S((x, y, z(x, y)), A)$

Lemma: All minimal paths between $K, D \subset S$ are given by the set

 $G := \{ (x, y, z(x, y)) : \mathbb{M}_K(x, y) + \mathbb{M}_D(x, y) = g_m \}$

where $g_m = \min_{(x,y)}(\mathbb{M}_K + \mathbb{M}_D)$

Let α_K, α_D denote distance contour evolutions starting from $\partial K, \partial D$ respectively.

Lemma: The tangential points of $\alpha_K(u,t)$ and $\alpha_D(\tilde{u},t)$ for $\tilde{t}+t=g_m$ generate the minimal paths from p_1 to p_2 . i.e. lie on a constant parameter $u = u_0(\tilde{u} = \tilde{u}_0)$ of the propagating curve $\alpha_K(u,t)(\alpha_D(\tilde{u},\tilde{t}))$ 2

3

4

5

6

7

8

9

10

Riemannian Metric in Local Parametrisation

- Let $p \in S \subset \mathbb{R}^M$ and ϕ be a local parametrisation around p with $\phi(x) = p$
- Consider the basis of T_pS , $\{\partial_i := \frac{\partial \phi}{\partial x_i}(x) \mid 1 \le i \le N\}$
- Consider the Riemmanian metric g on S induced by the Euclidean space of \mathbb{R}^M (The first fundamental form in the case of a surface: M = 3, N = 2).
- Lemma: At T_pS we have that

$$g(v,w) = \sum_{i,j=1}^{n} g_{i,j} v_i w_j$$

for all $v = \sum v_i \partial_i$ and $w = w_i \partial_i$. where

$$g_{i,j} = \left\langle \frac{\partial \phi}{\partial x_i}, \frac{\partial \phi}{\partial x_j} \right\rangle = \left\langle \partial_i, \partial_j \right\rangle$$

The Gradient Over a Surface

• In \mathbb{R}^N , we have $\langle \nabla f(x), v \rangle = Df(x)(v)$, for all $v \in \mathbb{R}^N$

• Lemma: For a function $f: S \to \mathbb{R}$:

i) $Df(p)(v) := \frac{d}{dt}f(\gamma(t))|_{t=0}$ for some $\gamma: I \to S$, s.t. $\gamma(0) = p, \gamma'(0) = v$, is well defined (does not depend on γ)

ii) There exists a unique element $\nabla f \in T_pS$ s.t.

$$g(\nabla f(p), v) = Df(p)(v)$$

for all $v \in T_pS$. It is given by

$$\nabla f = \sum_{i=1}^{N} a_i \partial_i, \quad \text{with} \quad a_i = \sum_{j=1}^{N} g^{i,j} \frac{\partial (f \circ \phi)}{\partial x_j}$$

with $(g^{i,j})_{1 \le i \le N}$ the inverse of $(g_{i,j})_{1 \le i \le N}$ and ϕ local parametrisation.

12

1

2

3

4

5

6

7

8

9

10

The Divergence of a Vector Field

• For a vector field in \mathbb{R}^N and a function f with compact support (zero outside a compact set)

$$\int_{\mathbb{R}^N} f \, div(V) dx = -\int_{\mathbb{R}^N} \langle \nabla f, V \rangle \, dx \tag{3}$$

 $\blacklozenge~$ If f is defined over S and $\phi:U\to S$ are local coordinates

$$\int_{\phi(U)} f \, dS = \int_U f \sqrt{|g|} \, dx$$

• Thus (3) transforms in the case of a surface into

$$\int_{S} f \, div_{\phi}(V) \sqrt{|\det g|} \, dx = -\int_{S} g(\nabla_{\phi} f, V) \sqrt{|\det g|} \, dx$$

for f with compact support, and we get

$$div_{\phi}(V) = \frac{1}{\sqrt{|\det g|}} \sum_{i=1}^{N} \frac{\partial}{\partial x_i} (V_i \sqrt{|\det g|})$$

Laplace-Beltrami Operator

• The Laplace Beltrami operator of a function $f: S \to \mathbb{R}$ in local coordinates $\phi: U \to S, U \subset \mathbb{R}^N$, is given by

$$\Delta_{\phi} f := div_{\phi}(\nabla_{\phi} f) = \frac{1}{\sqrt{|\det g|}} \sum_{i,j=1}^{N} \frac{\partial}{\partial x_i} \left(\sqrt{|\det g|} g^{i,j} \frac{\partial f}{\partial x_j} \right)$$