
Lecture 13 M I
A

Lecture 13
� Length Minimising Properties

� Computing Geodesics
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Exponential Map M I
A

Geodesic Polar Coordinates
� Choose in TpS a system of polar coordinates with ρ the polar radius and
θ, 0 < θ < 2π the polar angle.

� Up to the half-line l corresponding to θ = 0 the diffeomorphism expp defines a
system of polar coordinates.

� For any q ∈ V geodesic circles and radial geodesics correspond to the images of
the circles ρ = const and lines θ = const

� Lemma: (Gauss lemma) Let σ : U \ l→ V \ L be a system of geodesic polar
coordinates. Then the first fundamental form satisfy E(ρ, θ) = 1, F (ρ, θ) = 0.
Moreover G > 0 for ρ 6= 0.
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Length Minimisation Property of Geodesics
� Theorem Let p be a point in S. There exists a neighborhood W ⊂ S of p such

that if γ : [0, t1]→W is a parametrised geodesic with γ(0) = p, γ(t1) = q, and
α : [0, t1]→ S be a parametrised curve joining p and q we have

L(γ) ≤ L(α).

Moreover, if L(α) = L(γ) then their graphs in S coincide

Topology concepts:

� K ⊂ RN is a closed set if for any sequences of points (xk) ⊂ K which converge
to a point x0 it follows that x0 ∈ K

� O ⊂ RN is a open set if for any z0 ∈ O there is a r > 0 s.t.
{z ∈ RN : ||z − z0|| < r} ⊂ O

� O ⊂ RN is open iff Oc := RN \O is closed

� A surface is compact if it is closed and bounded
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Length Minimisation Property of Geodesics
� We denote the distance between two points p, q of the surface with

dS(p, q) := inf {L(γ) : γ : [t0, t1]→ S, γ(t0) = p, γ(t1) = q}

where the infimum is taken aver all differentiable curves joining p and q

� If K ⊂ S, we denote the minimal distance from p to K

dS(p,K) := inf {dS(p, q) : q ∈ K}

1

2

3

4

5

6

7

8

9

10

11

12

http://www.mia.uni-saarland.de


Exponential Map M I
A

Length Minimisation Property of Geodesics
� Proposition: On compact manifolds, there is a radius δ > 0 such that the

exponential map is injective at least within distance δ around each point of the
manifold.

� Theorem (Hopf-Rinow): A connected, compact manifold is geodesically
complete, i.e. any pair of points can be joined by a lenght minimal geodesic.
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Surface Sampling
Surface sampling can be useful for example to:

� acquire discrete samples from a continuous surface

� reduce the number of samples of a given mesh

� seed evenly a set of points on a surface:

• relevant in numerical analysis to have a good accuracy

• display 3D models with a low number of polygons

Typically samples should be approximately at the same distance from each other.

� naive solution: consider a regular grid on the domain of a surface
parametrisation φ

� performs poorly if φ introduces heavy geodesic distortions.

Computation of geodesic distances is therefore a central tool
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Applications: Surface Sampling M I
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Surface Sampling
Instead consider:

� (ε-covering): {x1, ..., xn} ⊂ S s.t.⋃
i

Bε(xi) = S where Bε(x) := {y : dS(x, y) ≤ ε}

� (ε-separated sampling): {x1, ..., xn} ⊂ S s.t.

max (dS(xi, xj)) ≤ ε

Assume we have a way to compute the geodesic distance:

� The farthest point sampling algorithm: greedy strategy adding the point of
largest distance to the current of set sampling points

� The farthest point sampling {x1, x2, ..., xn} is an ε-covering that is ε-separated
for

ε = max
i=1,...,n

min
i=1,...n

dS(x1, xj)
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Equal Distance Contour
� Given a source area K ⊂ S. We want to find a curve evolution s.t. the graph of
α(·, t) is {p ∈ S : ds(p,K) = t}, the equal distance contour of distance t

� Consider the general evolution

αt = N ×
−→
tα, α(u, 0) = α0(u)

� Lemma: The curve β(t) := α(u, t)|u=u0 is a geodesic
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Level Sets Propagation M I
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Equal Distance Contour
� Proposition: The equal distance contour evolution of an initial curve u0 is given

by

αt = N ×
−→
tα α(·, 0) = u0(·)

� Given a source area K we can find the equal distance contours
{p ∈ S : ds(p,K) = t} choosing u0 with graph equal to the boundary of K

� If source is a point choose K to be a small circle around the point
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Level Sets Propagation
� Implementing directly an evolution of a 3D curve is quite cumbersome. We are

interested is the projection π of this 3D curve in the xy plane.

� Proposition: The projected equal distance contour evolution is given by

Ct = VN
−→n c0 = ∂π(K)

moreover

VN =
〈−→n , π(N ×−→tα)〉 =

√
(1 + q2)n2

1 + (1 + p2)n2
2 − 2pqn1n2

1 + p2 + q2
,

where p = ∂z
∂x, q =

∂z
∂y and −→n = (n1, n2)

� This means that

VN =
√
an2

1 + bn2
2 − cn1n2,

where a, b, c depend on the surface gradient and can be computed once at the
start
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Finding minimal paths
� Let A ⊂ S and MA(x, y) := dS((x, y, z(x, y)), A)

� Lemma: All minimal paths between K,D ⊂ S are given by the set

G := {(x, y, z(x, y)) : MK(x, y) +MD(x, y) = gm}

where gm = min(x,y)(MK +MD)

� Let αK, αD denote distance contour evolutions starting from ∂K, ∂D
respectively.
Lemma: The tangential points of αK(u, t) and αD(ũ, t) for t̃+ t = gm generate
the minimal paths from p1 to p2. i.e. lie on a constant parameter
u = u0(ũ = ũ0) of the propagating curve αK(u, t)(αD(ũ, t̃))
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