Lecture 13

Lecture 13
® |ength Minimising Properties

® Computing Geodesics
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Exponential Map

Geodesic Polar Coordinates

¢ Choose in T},S a system of polar coordinates with p the polar radius and
0,0 < 0 < 27 the polar angle.

® Up to the half-line [ corresponding to 6 = 0 the diffeomorphism exp,, defines a
system of polar coordinates.

® For any ¢ € V geodesic circles and radial geodesics correspond to the images of
the circles p = const and lines 6 = const

® Lemma: (Gauss lemma) Let 0 : U \ [ — V \ L be a system of geodesic polar
coordinates. Then the first fundamental form satisfy E(p,0) =1, F(p,0) = 0.
Moreover G > 0 for p # 0.
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Exponential Map

Length Minimisation Property of Geodesics

® Theorem Let p be a point in S. There exists a neighborhood W C S of p such
that if v : [0,¢1] — W is a parametrised geodesic with v(0) = p,y(t1) = ¢, and
a :[0,t1] — S be a parametrised curve joining p and ¢ we have

L(7) < L{o).
Moreover, if L(a) = L(7y) then their graphs in S coincide

Topology concepts:

¢ K C R¥ is a closed set if for any sequences of points (x;) C K which converge
to a point xg it follows that xg € K

® O c RY is a open set if for any zg € O there is a r > 0 s.t.
{zeRY:||z—2l|<r} CO

® O c RY is open iff O¢ :=R¥ \ O is closed

® A surface is compact if it is closed and bounded
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Exponential Map

Length Minimisation Property of Geodesics

® We denote the distance between two points p, ¢ of the surface with

ds(p,q) :=inf {L(7) : v : [to, t1] = S,v(to) = p,¥(t1) = q}

where the infimum is taken aver all differentiable curves joining p and q

® If K C S, we denote the minimal distance from p to K

ds(p, K) :=inf {ds(p,q) : ¢ € K}
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Exponential Map

Length Minimisation Property of Geodesics

® Proposition: On compact manifolds, there is a radius d > 0 such that the
exponential map is injective at least within distance 0 around each point of the

manifold.

® Theorem (Hopf-Rinow): A connected, compact manifold is geodesically
complete, i.e. any pair of points can be joined by a lenght minimal geodesic.
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Applications: Surface Sampling

Surface Sampling

Surface sampling can be useful for example to:
® acquire discrete samples from a continuous surface
® reduce the number of samples of a given mesh
® seced evenly a set of points on a surface:
e relevant in numerical analysis to have a good accuracy

e display 3D models with a low number of polygons

Typically samples should be approximately at the same distance from each other.

® naive solution: consider a regular grid on the domain of a surface
parametrisation ¢

® performs poorly if ¢ introduces heavy geodesic distortions.

Computation of geodesic distances is therefore a central tool
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Applications: Surface Sampling

Surface Sampling
Instead consider:

® (e-covering): {x1,...,x} C S s.t.

UBe(xi) =S5 where B z):={y:ds(z,y) <e}

® (e-separated sampling): {z1,...,x,} C S s.t.

max (dg(zi,z;)) <€

Assume we have a way to compute the geodesic distance:

® The farthest point sampling algorithm: greedy strategy adding the point of
largest distance to the current of set sampling points

® The farthest point sampling {x1, x3,...,z,} is an e-covering that is e-separated
for

e = max min dg(xi,;)
1=1,....n1=1,...n
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Level Sets Propagation

Equal Distance Contour

® Given a source area K C S. We want to find a curve evolution s.t. the graph of
a(-,t)is {p € S : ds(p, K) = t}, the equal distance contour of distance ¢

® Consider the general evolution

?

a; =N xt% «alu,0) = ag(u)

¢ Lemma: The curve B(t) := a(u,t)|u=v, is a geodesic
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Level Sets Propagation

Equal Distance Contour

® Proposition: The equal distance contour evolution of an initial curve ug is given
by
_ i _
ar =N xt% «a-,0) =ug(+)

® Given a source area K we can find the equal distance contours
{p €S :ds(p, K) =t} choosing uy with graph equal to the boundary of K

® [f source is a point choose K to be a small circle around the point



http://www.mia.uni-saarland.de

Level Sets Propagation

Level Sets Propagation

4

4

Implementing directly an evolution of a 3D curve is quite cumbersome. We are
interested is the projection 7 of this 3D curve in the xy plane.

Proposition: The projected equal distance contour evolution is given by
C,=VNT  c¢y=0n(K)

Mmoreover

_ — (1+ ¢®)nt + (1 + p?)n3 —2pqn1n2
o N =
VN <n,7r( Xt)> \/ 1—|—p +q

B )
where p = 52, q = az and 7 = (n1,n2)

This means that

VN = \/a,n% + bn% — cnina,

where a, b, ¢c depend on the surface gradient and can be computed once at the
start
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Finding Minimal Paths

Finding minimal paths
® let AC S and My(x,y) :=ds((z,y, z(x,y)), A)

® Lemma: All minimal paths between K, D C S are given by the set

G:={(z,y,2(x,y)) : Mg(z,y) +Mp(z,y) = gm}

where g, = min(, (Mg + Mp)

® Let ag,ap denote distance contour evolutions starting from 0K, 0D
respectively.
Lemma: The tangential points of ax(u,t) and ap(@,t) for t +t = g,, generate
the minimal paths from p; to ps. i.e. lie on a constant parameter

~

u = ug(t = tg) of the propagating curve ag(u,t)(ap(u,t))
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