
Lecture 12 M I
A

Lecture 12
� Geodesics and Geodesic Curvature

� Exponential Map

� Length Minimising Properties
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Geodesics M I
A

Definition of Geodesic
� A nonconstant parametrised curve γ : I → S is said to be geodesic at t ∈ I if

Dγ′(t)

dt
= 0.

It is a parametrised geodesic if it is geodesic for all t ∈ I

� For a parametrised geodesic ||γ′(t)|| 6= 0 is constant. The parameter t of a
parametrised geodesic γ is thus proportional to the length of γ.

� On the plane only straight lines are geodesic
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Geodesics M I
A

Definition of Geodesic
� A regular connected curve C in S is a geodesic if for each p ∈ C the arc length

parametrisation near p is a parametrised geodesic

� Coincides with saying that for the corresponding arc length parametrisation,
α′′(s) is normal to the tangent plane.

Examples

� The great circles of a sphere are geodesics

� Geodescis for the cylinder {x2 + y2 = 1} are: straight lines of the cylinder, circles
obtained by horizontal cuts or helixes
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Geodesics M I
A

Geodesic curvature
Let w be a differentiable field of unit vectors along α : I → S, with S an oriented
surface.

� Letting
Dw

dt
= λ(N × w(t))

the real number λ(t) denoted by
[
Dw
dt

]
is called the algebraic value of the

covariant derivative of w at t

� The sign of
[
Dw
dt

]
depends on the orientation of S and

[
Dw

dt

]
=

〈
dw

dt
,N × w

〉
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Geodesic Curvature M I
A

Geodesic Curvature
Let C be a regular curve contained on an oriented surface S and α be an arch length
parametrisation near some p ∈ S.

� The geodesic curvature κg of C at p is the algebraic value of α′(s) at p

κg :=
[
Dα′(s)
ds

]
= 〈α′′, N × α′〉

� Geodesic curvature changes sign when we change the orientation of either C or
M

� Proposition: We have that
κ2 = κ2g + κ2n,

where κn = 〈α′′, N〉 and geodesics are characterised as curves whose geodesic
curvature is zero
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Geodesic Curvature M I
A

Rate of Change of Angle Between Unit Vector Fields
� Let v, w be two unit vector fields along α : I → S. Consider a differentiable

vector field v̄ s.t. {v(t), v̄(t), N(t)} is positively oriented and let

w(t) = a(t)v(t) + b(t)v̄(t),

with a, b are differentiable and

a2 + b2 = 1.

� Lemma: Let a, b be as above and φ0 be such that a(t0) = cosφ0, b(t0) = sinφ0.
Then

φ = φ0 +

∫ t

t0

(ab′ − ba′)dt

is s.t. cosφ(t) = a(t), sinφ(t) = b(t), for t ∈ I and φ(t0) = φ0

� Lemma: We have [
Dw

dt

]
−
[
Dv

dt

]
=
dφ

dt
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Geodesic Curvature M I
A

Characterisation of Geodesic Curvature
� Proposition: Let C be a curve in the oriented surface S with arc length

parametrisation α(s) and v(s) be a parallel field along α, then

κg(s) =

[
Dα′(s)

ds

]
=
dφ

ds

where φ(s) is a determination of the angle from v to α′ in the orientation of S
(Slide 6)

� In other words: the geodesic curvature is the rate of change of the angle that the
tangent to the curve makes with a parallel direction along the curve

� In the case of a plane κg reduces to the usual curvature
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Geodesic Curvature M I
A

Example: Curvature Motion on Surfaces
� Curvature Motion in R2

Ut = ||∇U ||div
(
∇U
||∇U ||

)

� Assume we define the gradient and divergence over a surface S (more on that
next week). Then we can extend it to

Ut = ||∇σU ||divσ
(
∇σU
||∇σU ||

)

� This is called geodesic curvature flow since it turns out that

divσ

(
∇σU
||∇σU ||

)
= −κσ

is the geodesic curvature of the level line given by U = const on S
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Geodesic Curvature M I
A

Example: Curvature Motion on Surfaces

Figure: Four examples for geodesic curvature flow of level sets on surfaces. Evolution
times are equally spaced. (Cheng et al. 2002)
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Geodesic Curvature M I
A

Equations in Local Coordinates
� Lemma: Let γ : I → S be a parametrised curve and let σ be a parametrisation

of S around γ(t0). Let γ(t) = σ(u(t), v(t)) and the tangent vector γ′(t) be given
as

w = u′(t)σu + v′(t)σv.

Then w is parallel if and only if u(t), v(t) solve (See Lecture 11 Slide 9)

u′′ + Γ1
11(u

′)2 + 2Γ1
12u

′v′ + Γ1
22(v

′)2 = 0

v′′ + Γ2
11(u

′)2 + 2Γ2
12u

′v′ + Γ2
22(v

′)2 = 0

As a consequence we obtain the existence of a local geodesic for any direction:

� Proposition: Given a point p ∈ S and a vector w ∈ Tp(S), w 6= 0, there exists
an ε > 0 and a unique parametrised geodesic γ : (−ε, ε)→ S such that
γ(0) = p, γ′(0) = w
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Exponential Map M I
A

Exponential Map
� There always exists locally a unique parametrised geodesic with given direction

(Slide 10). We denote the geodesic γ through p = γ(0) on v = γ′(0) ∈ TpS with
γ(t, v)

� Lemma: If the geodesic γ(t, v) is defined for t ∈ (−ε, ε), then the geodesic
γ(t, λv), λ 6= 0, is defined for t ∈ (−ε/γ, ε/γ) and γ(t, λv) = γ(λt, v)

Since the speed of the geodesic is constant, we can go over its graph within a
prescribed time by adjusting the speed appropriately

� If v ∈ TpS and v 6= 0 is such that γ(|v|, v/|v|) = γ(1, v) is defined, we set

expp(v) = γ(1, v) and expp(0) = p

the exponential map

Corresponds to laying off a length equal to ||v|| along the geodesic through p
with direction of v.
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Exponential Map M I
A

Exponential Map
� Proposition: Given p ∈ S there exists an ε > 0 such that expp is defined and

differentiable in the interior Bε of a disk of radius ε of TpS with center in the
origin

� Proposition: expp : Bε ⊂ TpS → S is a diffeomorphism in a neighborhood U of
the origin
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Exponential Map M I
A

Normal and Geodesic Polar Coordinates
Geodesic Normal Coordinates

� Choose in the plane TpS two orthogonal unit vectors e1, e1. Let p ∈ U and V be
s.t. expp : U → V is a diffeomorphism.

� Any q ∈ V can be written as v = expp(ue1 + ve2). We call u, v the normal
coordinates of q

� The geodesics correspond to the image by expp of lines u = at, v = bt

Geodesic Polar Coordinates

� Choose in TpS a system of polar coordinates with ρ the polar radius and
θ, 0 < θ < 2π the polar angle.

� Up to the half-line l corresponding to θ = 0 the diffeomorphism expp defines a
system of polar coordinates.

� For any q ∈ V geodesic circles and radial geodesics correspond to the images of
the circles ρ = const and lines θ = const
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Exponential Map M I
A

Length Minimisation Property of Geodesics
Theorem Let p be a point in S. Then, there exists a neighborhood W ⊂ S of p such
that if γ : I →W is a parametrised geodesic with γ(0) = p, γ(t1) = p, t1 ∈ I, and
α : [0, t1]→ S be a parametrised curve joining p and q we have

L(γ) ≤ L(α)
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