Lecture 12

Lecture 12

€ Geodesics and Geodesic Curvature
® Exponential Map

® Length Minimising Properties



http://www.mia.uni-saarland.de

Geodesics

Definition of Geodesic

® A nonconstant parametrised curve v : I — S is said to be geodesic at ¢t € I if

Dv'(t)

= 0.
dt

It is a parametrised geodesic if it is geodesic for all t € 1

® For a parametrised geodesic ||7/(¢)|| # 0 is constant. The parameter t of a
parametrised geodesic v is thus proportional to the length of ~.

® On the plane only straight lines are geodesic
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Geodesics

Definition of Geodesic

® A regular connected curve C' in S is a geodesic if for each p € C' the arc length
parametrisation near p is a parametrised geodesic

¢ Coincides with saying that for the corresponding arc length parametrisation,
a''(s) is normal to the tangent plane.

Examples
® The great circles of a sphere are geodesics

¢ Geodescis for the cylinder {2 + y? = 1} are: straight lines of the cylinder, circles
obtained by horizontal cuts or helixes
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Geodesics

Geodesic curvature

Let w be a differentiable field of unit vectors along oo : I — S, with S an oriented
surface.

® |etting
Dw
dt
the real number A(t) denoted by [2%] is called the algebraic value of the
covariant derivative of w at ¢

— AN x w(t))

® The sign of [2%] depends on the orientation of S and
dt
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Geodesic Curvature

Geodesic Curvature

Let C' be a regular curve contained on an oriented surface S and a be an arch length
parametrisation near some p € S.

® The geodesic curvature x, of C at p is the algebraic value of a/(s) at p

Kg 1= [Do‘d—/s(s)] = (o, N x o)

® Geodesic curvature changes sign when we change the orientation of either C or
M

® Proposition: We have that

K2 = lﬁlg + lii,
where k, = (', N) and geodesics are characterised as curves whose geodesic
curvature Is zero
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Geodesic Curvature

Rate of Change of Angle Between Unit Vector Fields

® |et v, w be two unit vector fields along « : I — S. Consider a differentiable
vector field v s.t. {v(t),v(t), N(t)} is positively oriented and let

w(t) = a(t)v(t) + b(t)v(t),
with a, b are differentiable and
a?+b° =1.

® Lemma: Let a,b be as above and ¢ be such that a(tg) = cosgg, b(tg) = singg.
Then

t
¢ = o + / (ab’ — ba')dt

to

is s.t. coso(t) = a(t), sing(t) = b(t), for t € I and ¢(tg) = ¢o

Dw Dv| d¢
) L)~

® Lemma: We have
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Geodesic Curvature

Characterisation of Geodesic Curvature

® Proposition: Let C' be a curve in the oriented surface S with arc length
parametrisation «(s) and v(s) be a parallel field along «, then

=[]

where ¢(s) is a determination of the angle from v to @' in the orientation of S
(Slide 6)

® |n other words: the geodesic curvature is the rate of change of the angle that the
tangent to the curve makes with a parallel direction along the curve

@ In the case of a plane k, reduces to the usual curvature
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Geodesic Curvature

Example: Curvature Motion on Surfaces

€ Curvature Motion in R?

VU
U; = ||VU||div (—)
! VU]

¢ Assume we define the gradient and divergence over a surface S (more on that
next week). Then we can extend it to

V.U
U, = ||VO-U||divJ( 7 )
’f 1V, U]

® This is called geodesic curvature flow since it turns out that

div ( Vol )_—KJ
"\ VU]l ’

Is the geodesic curvature of the level line given by U = const on S
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Geodesic Curvature

Example: Curvature Motion on Surfaces

Figure: Four examples for geodesic curvature flow of level sets on surfaces. Evolution
times are equally spaced. (Cheng et al. 2002)
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Geodesic Curvature

Equations in Local Coordinates

® Lemma: Let v: 1 — S be a parametrised curve and let o be a parametrisation
of S around ~(tg). Let v(t) = o(u(t),v(t)) and the tangent vector +'(t) be given
as
w = u'(t)o, + V' (t)o,.

Then w is parallel if and only if u(t),v(t) solve (See Lecture 11 Slide 9)

u” + T (u)? + 200"y + Tor(v)* =
v+ T7 (u')? + 2T pu'v' + T35(0")? =

As a consequence we obtain the existence of a local geodesic for any direction:

¢ Proposition: Given a point p € S and a vector w € T,,(S),w # 0, there exists
an € > 0 and a unique parametrised geodesic 7y : (—¢,€) — S such that

Y(0) =p,7'(0) = w
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Exponential Map

Exponential Map

® There always exists locally a unique parametrised geodesic with given direction
(Slide 10). We denote the geodesic v through p = ~v(0) on v = ~/(0) € T},,S with

v(t,v)

® Lemma: If the geodesic (¢, v) is defined for t € (—¢, €), then the geodesic
v(t, Av), A # 0, is defined for t € (—€/v,€/7v) and v(t, \v) = v(At, v)

Since the speed of the geodesic is constant, we can go over its graph within a
prescribed time by adjusting the speed appropriately

¢ If veT,S and v # 0 is such that vy(|v|,v/|v|) = (1, v) is defined, we set

exp,(v) = 7(1,v) and exp,(0) = p

the exponential map

Corresponds to laying off a length equal to ||v|| along the geodesic through p
with direction of v.
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Exponential Map

Exponential Map

® Proposition: Given p € S there exists an ¢ > 0 such that exp,, is defined and
differentiable in the interior B, of a disk of radius € of 1,5 with center in the

origin
¢ Proposition: exp, : B C T;,S — S is a diffeomorphism in a neighborhood U of
the origin
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Exponential Map

Normal and Geodesic Polar Coordinates

Geodesic Normal Coordinates

¢ Choose in the plane T,S two orthogonal unit vectors eq,e;. Let p € U and V be
s.t. exp, : U — V is a diffeomorphism.

® Any g € V can be written as v = exp,(ue; + vez). We call u,v the normal
coordinates of ¢

® The geodesics correspond to the image by exp,, of lines u = at,v = bt

Geodesic Polar Coordinates

¢ Choose in T},S a system of polar coordinates with p the polar radius and
0,0 < 0 < 27 the polar angle.

® Up to the half-line [ corresponding to # = 0 the diffeomorphism exp,, defines a
system of polar coordinates.

® For any ¢ € V geodesic circles and radial geodesics correspond to the images of
the circles p = const and lines 6 = const
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Exponential Map

Length Minimisation Property of Geodesics

Theorem Let p be a point in S. Then, there exists a neighborhood W C S of p such
that if v : I — W is a parametrised geodesic with v(0) = p,~y(t1) = p,t1 € I, and
a :[0,t1] — S be a parametrised curve joining p and ¢ we have

L(vy) < L(w)
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