Lecture 12

- Geodesics and Geodesic Curvature
- Exponential Map
- Length Minimising Properties

Definition of Geodesic

• A nonconstant parametrised curve $\gamma: I \to S$ is said to be geodesic at $t \in I$ if

 $\frac{D\gamma'(t)}{dt} = 0.$

It is a parametrised geodesic if it is geodesic for all $t \in I$

- For a parametrised geodesic $||\gamma'(t)|| \neq 0$ is constant. The parameter t of a parametrised geodesic γ is thus proportional to the length of γ .
- On the plane only straight lines are geodesic

Definition of Geodesic

- A regular connected curve C in S is a geodesic if for each $p \in C$ the arc length parametrisation near p is a parametrised geodesic
- Coincides with saying that for the corresponding arc length parametrisation, $\alpha''(s)$ is normal to the tangent plane.

Examples

- The great circles of a sphere are geodesics
- Geodescis for the cylinder $\{x^2 + y^2 = 1\}$ are: straight lines of the cylinder, circles obtained by horizontal cuts or helixes

Geodesic curvature

Let w be a differentiable field of unit vectors along $\alpha : I \to S$, with S an oriented surface.

Letting

$$\frac{Dw}{dt} = \lambda(N \times w(t))$$

the real number $\lambda(t)$ denoted by $\left[\frac{Dw}{dt}\right]$ is called the algebraic value of the covariant derivative of w at t

• The sign of $\left[\frac{Dw}{dt}\right]$ depends on the orientation of S and

$$\left[\frac{Dw}{dt}\right] = \left\langle \frac{dw}{dt}, N \times w \right\rangle$$

Geodesic Curvature

Let C be a regular curve contained on an oriented surface S and α be an arch length parametrisation near some $p \in S$.

- The geodesic curvature κ_g of C at p is the algebraic value of $\alpha'(s)$ at p $\kappa_g := \left[\frac{D\alpha'(s)}{ds}\right] = \langle \alpha'', N \times \alpha' \rangle$
- Geodesic curvature changes sign when we change the orientation of either C or M
- Proposition: We have that

$$\kappa^2 = \kappa_g^2 + \kappa_n^2,$$

where $\kappa_n=\langle \alpha'',N\rangle$ and geodesics are characterised as curves whose geodesic curvature is zero

Rate of Change of Angle Between Unit Vector Fields

• Let v, w be two unit vector fields along $\alpha : I \to S$. Consider a differentiable vector field \bar{v} s.t. $\{v(t), \bar{v}(t), N(t)\}$ is positively oriented and let

 $w(t) = a(t)v(t) + b(t)\bar{v}(t),$

with a, b are differentiable and

$$a^2 + b^2 = 1.$$

Lemma: Let a, b be as above and ϕ_0 be such that $a(t_0) = cos\phi_0, b(t_0) = sin\phi_0$. Then

$$\phi = \phi_0 + \int_{t_0}^t (ab' - ba')dt$$

is s.t. $cos\phi(t) = a(t), sin\phi(t) = b(t)$, for $t \in I$ and $\phi(t_0) = \phi_0$

Lemma: We have

$$\left[\frac{Dw}{dt}\right] - \left[\frac{Dv}{dt}\right] = \frac{d\phi}{dt}$$

Characterisation of Geodesic Curvature

• **Proposition:** Let C be a curve in the oriented surface S with arc length parametrisation $\alpha(s)$ and v(s) be a parallel field along α , then

$$\kappa_g(s) = \left[\frac{D\alpha'(s)}{ds}\right] = \frac{d\phi}{ds}$$

where $\phi(s)$ is a determination of the angle from v to α' in the orientation of S (Slide 6)

- In other words: the geodesic curvature is the rate of change of the angle that the tangent to the curve makes with a parallel direction along the curve
- In the case of a plane κ_g reduces to the usual curvature

Example: Curvature Motion on Surfaces

• Curvature Motion in \mathbb{R}^2

$$U_t = ||\nabla U|| div \left(\frac{\nabla U}{||\nabla U||}\right)$$

• Assume we define the gradient and divergence over a surface S (more on that next week). Then we can extend it to

$$U_t = ||\nabla_{\sigma} U|| div_{\sigma} \left(\frac{\nabla_{\sigma} U}{||\nabla_{\sigma} U||}\right)$$

• This is called geodesic curvature flow since it turns out that

$$div_{\sigma}\left(\frac{\nabla_{\sigma}U}{||\nabla_{\sigma}U||}\right) = -\kappa_{\sigma}$$

is the geodesic curvature of the level line given by $U=const\ {\rm on}\ S$

Geodesic Curvature

Example: Curvature Motion on Surfaces

Figure: Four examples for geodesic curvature flow of level sets on surfaces. Evolution times are equally spaced. (Cheng et al. 2002)

Equations in Local Coordinates

• Lemma: Let $\gamma: I \to S$ be a parametrised curve and let σ be a parametrisation of S around $\gamma(t_0)$. Let $\gamma(t) = \sigma(u(t), v(t))$ and the tangent vector $\gamma'(t)$ be given as

 $w = u'(t)\sigma_u + v'(t)\sigma_v.$

Then w is parallel if and only if u(t), v(t) solve (See Lecture 11 Slide 9)

$$u'' + \Gamma_{11}^{1}(u')^{2} + 2\Gamma_{12}^{1}u'v' + \Gamma_{22}^{1}(v')^{2} = 0$$
$$v'' + \Gamma_{11}^{2}(u')^{2} + 2\Gamma_{12}^{2}u'v' + \Gamma_{22}^{2}(v')^{2} = 0$$

As a consequence we obtain the existence of a local geodesic for any direction:

• **Proposition:** Given a point $p \in S$ and a vector $w \in T_p(S), w \neq 0$, there exists an $\epsilon > 0$ and a unique parametrised geodesic $\gamma : (-\epsilon, \epsilon) \to S$ such that $\gamma(0) = p, \gamma'(0) = w$

Exponential Map

- There always exists locally a unique parametrised geodesic with given direction (Slide 10). We denote the geodesic γ through $p = \gamma(0)$ on $v = \gamma'(0) \in T_pS$ with $\gamma(t, v)$
- **Lemma:** If the geodesic $\gamma(t, v)$ is defined for $t \in (-\epsilon, \epsilon)$, then the geodesic $\gamma(t, \lambda v), \lambda \neq 0$, is defined for $t \in (-\epsilon/\gamma, \epsilon/\gamma)$ and $\gamma(t, \lambda v) = \gamma(\lambda t, v)$

Since the speed of the geodesic is constant, we can go over its graph within a prescribed time by adjusting the speed appropriately

• If $v \in T_pS$ and $v \neq 0$ is such that $\gamma(|v|, v/|v|) = \gamma(1, v)$ is defined, we set

 $\exp_p(v)=\gamma(1,v) \quad \text{and} \quad \exp_p(0)=p$

the exponential map

Corresponds to laying off a length equal to ||v|| along the geodesic through p with direction of v.

Exponential Map

- **Proposition:** Given $p \in S$ there exists an $\epsilon > 0$ such that \exp_p is defined and differentiable in the interior B_{ϵ} of a disk of radius ϵ of T_pS with center in the origin
- **Proposition:** $\exp_p : B_{\epsilon} \subset T_pS \to S$ is a diffeomorphism in a neighborhood U of the origin

Normal and Geodesic Polar Coordinates

Geodesic Normal Coordinates

- Choose in the plane T_pS two orthogonal unit vectors e_1, e_1 . Let $p \in U$ and V be s.t. $\exp_p : U \to V$ is a diffeomorphism.
- Any $q \in V$ can be written as $v = \exp_p(ue_1 + ve_2)$. We call u, v the normal coordinates of q
- The geodesics correspond to the image by exp_p of lines u = at, v = bt

Geodesic Polar Coordinates

- Choose in T_pS a system of polar coordinates with ρ the polar radius and $\theta, 0 < \theta < 2\pi$ the polar angle.
- Up to the half-line l corresponding to $\theta = 0$ the diffeomorphism \exp_p defines a system of polar coordinates.
- For any $q \in V$ geodesic circles and radial geodesics correspond to the images of the circles $\rho = const$ and lines $\theta = const$

1

Exponential Map

Length Minimisation Property of Geodesics

Theorem Let p be a point in S. Then, there exists a neighborhood $W \subset S$ of p such that if $\gamma: I \to W$ is a parametrised geodesic with $\gamma(0) = p, \gamma(t_1) = p, t_1 \in I$, and $\alpha: [0, t_1] \to S$ be a parametrised curve joining p and q we have

 $L(\gamma) \leq L(\alpha)$

