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® Parallel Transport
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Vector Fields in R?

Vector Fields in R?
® A vector field in an open U C R? is a map w(q) = (a(q),b(q)) € R%,Vq e U
® |t is differentiable if its coordinates a and b are
¢ Corresponds to assigning to each ¢ a vector in T;R?

® Example: The gradient V f of a smooth function f: U — R

Remark: In what follows we only consider differentiable vector fields
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Vector Fields in R?

Trajectory of a Vector Field in R?

® Given a vector field w on U C R?, a trajectory of this field is a curve
a(t) = (x(t),y(t)), t € I, such that

o (t) = w(a(t))

® Writing a(t) = (x(t),y(t)), the vector field w determines an ODE

d

- = al@y)
dy

7 _}

solved by the curve «
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Vector Fields in R?

Existence and Uniqueness of Trajectories

® Let w be a vector field in an open set U C R? and let p € U. From fundamental
results about ODE's we have that locally:

e Theorem: There exists a unique trajectory o : I — U with a(0) = p.

e Theorem: There exists a neighborhood V' C U of p, an interval I, and a
differentiable map a : V' x I — U, (the local flow of w at p) such that

0@.0) =, 2x(g.t) = wlalg, 1),

® As a consequence We obtain the following:

e Lemma: For w and p as above we obtain that if w(p) # 0, there exists
W C U of p and a differentiable f : W — R such that f is constant along

each trajectory of w and Vf(q) #0 for all g € W

e This function f is called a local first integal of w
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Vector Fields on a Surface

Vector Fields on a Surface

® A vector field w in an open set U of a regular surface S is a map w(p) € T,,S for
eachpe U

® |t is differentiable at p if for some local parametrisation o(u,v), the functions
a(u,v) and b(u,v) given by

w(p) = alu,v)oy, + b(u,v)o,

are differentiable at p (this definition does not depend on the choice of o)
® Trajectories of w can be defined similarly as in the case of R?

® Previous properties about trajectories extend to surfaces (in particular results
about existence of a local flow and local first integral)
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Vector Fields on a Surface

Examples

® The vector field obtained by parametrising the meridians of the torus in arc
length and taking w(p) to be the corresponding tangent vector

¢ Similar procedure for the semimeridians of a sphere gives a vector field on S?
minus the poles

® Reparametrise all semimeridians of a sphere with same parameter —1 <t < 1
and define v(p) = (1 — t*)w(p) for points different than the poles and v = 0 at

the poles

® There is no differentiable vector field w over all S? such that [|w]|| > 0 (hairy ball
theorem)
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Vector Fields on a Surface

Vector Fields on a Surface

Let wq,ws be vector fields in an open U of the regular surface S which are linearly
independent at some p € U.

® Theorem: There exists parametrisation of a neighborhood of p, V' C U, such
that the coordinate lines of this parametrisation passing through ¢ are tangent to
the lines spanned by w(q), w2(q)

¢ Corollary: For all p € S there exists a parametrisation o(u,v) such that the
curves u = const,v = const, intersect orthogonally for each g € V

Such a o is called orthogonal parametrisation.
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Covariant Derivative

Covariant Derivative
® Let w be a vector field on U, p € U, and v € T},S
® Let a be a be a curves.t. @(0) =p and &'(0) = v and consider w restricted to «

® The covariant derivative of w relative to v at p is the normal projection of %(0)
onto T,,S. It is denoted with £%(0) or D,w(p)

This definition does not depend on the choice of . In order to prove this we make
use of the Christoffel symbols Ffj. If o is a local parametrisation, they are defined by:

Ouwu =I'1100 + Ti10u + LN,
Ouwy =I' 1904 + 990, + LaN,
Oou =1'5100 + 5,0, + LaN,
Ovv =D'5y0y + L'ag0y + L3N

Remark: All geometric concepts and properties expresses in terms of the Christoffel
symbols are invariant under isometries (in particular Euclidean transformations).
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Covariant Derivative

Covariant Derivative

The definition of covariant derivative does not depend on the choice of «. In fact

letting
w(t) = a(u(t),v(t))oy + b(u(t),v(t))o, = a(t)o, + b(t)o,

we get that

Dw

— = =(a’ + Thiau + Tza0" + Tigbu’ + Topbv)ou+

(b + T3 au’ +T2,av 4+ Tibu’ + Taybv)oy,.

There is no explicit dependence on «
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Covariant Derivative

Covariant Derivative

® let o: 1 — S be a curve in the surface S. A vector field w along « is a map
w(t) € To)S, for each t € I. It is differentiable if that is the case for its
components in some local parametrisation.

® |If w is a differentiable vector field along oo : I — S. the covariant derivative of w

at ¢, 2% is well defined for all ¢ € I. It given by (eq. (1) slide 9)

D
d—:} =(a’ + T1jau’ 4+ T'1yav 4 yibu' + Tabv o, +

(b +Tfav’ + 200 4+ Tibu’ + Tabv')oy,

® From the point of view external to the surface it corresponds to the projection of

‘Z‘;’ (t) onto the tangent plane Tj,;)S.

Intutitively =

O‘ is the acceleration of the point «(t) "as seen from the surface”

Remark: All geometric concepts and properties expresses in terms of the Christoffel
symbols are invariant under isometries (in particular under Euclidean transformations).
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Parallel Transport

Parallel Vector Field along a Curve

® A vector field w along a curve o : I — S is said to be parallel if % = (0 for
every t € [

® Lemma: If w and w are parallel fields along «, then (w(t),w(t)) is constant.
In particular ||w(?)]|,||@w(¢)|| and the angle they form are constant
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Parallel Transport

Parallel Transport
Let a: I — S be acurvein S and let wg € Ty 4,)S, to € I, then:

® Theorem: There exists a unique parallel vector field w(t) along «a(t) with
UJ(to) = Wo

® The vector w(ty),t; € I is called the parallel transport of wq along « at point t;

® If « is regular, the parallel transport does not depend on the parametrisation of «
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Parallel Transport

Parallel Transport

Examples:
® [f S is a plane parallel transport corresponds to a constant vector along «

® The tangent vector field of a meridian of a sphere parametrised by arc length
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Geodesics

Definition of Geodesic

® A nonconstant parametrised curve v : I — S is said to be geodesic at ¢t € I if

Dv'(t)

= 0.
dt

It is a parametrised geodesic if it is geodesic for all t € 1

® We have that for a parametrised geodesic ||7/(%)|| is constant and nonzero. Thus
we may introduce the arc length s = ct as a parameter. The parameter ¢t of a
parametrised geodesic «y is thus proportional to the length of ~.

® On the plane only straight lines are geodesic at each point
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