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Lecture 11
� Vector Fields

� Covariant Derivatives

� Parallel Transport

� Geodesics
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Vector Fields in R2 M I
A

Vector Fields in R2

� A vector field in an open U ⊂ R2 is a map w(q) = (a(q), b(q)) ∈ R2,∀q ∈ U

� It is differentiable if its coordinates a and b are

� Corresponds to assigning to each q a vector in TqR2

� Example: The gradient ∇f of a smooth function f : U → R

Remark: In what follows we only consider differentiable vector fields
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Vector Fields in R2 M I
A

Trajectory of a Vector Field in R2

� Given a vector field w on U ⊂ R2, a trajectory of this field is a curve
α(t) = (x(t), y(t)), t ∈ I, such that

α′(t) = w(α(t))

� Writing α(t) = (x(t), y(t)), the vector field w determines an ODE

dx

dt
= a(x, y)

dy

dt
= b(x, y)

solved by the curve α
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Vector Fields in R2 M I
A

Existence and Uniqueness of Trajectories
� Let w be a vector field in an open set U ⊂ R2 and let p ∈ U. From fundamental

results about ODE’s we have that locally:

• Theorem: There exists a unique trajectory α : I → U with α(0) = p.

• Theorem: There exists a neighborhood V ⊂ U of p, an interval I, and a
differentiable map α : V × I → U, (the local flow of w at p) such that

α(q, 0) = q,
∂α

∂t
(q, t) = w(α(q, t)).

� As a consequence We obtain the following:

• Lemma: For w and p as above we obtain that if w(p) 6= 0, there exists
W ⊂ U of p and a differentiable f : W → R such that f is constant along
each trajectory of w and ∇f(q) 6= 0 for all q ∈W

• This function f is called a local first integal of w
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Vector Fields on a Surface M I
A

Vector Fields on a Surface
� A vector field w in an open set U of a regular surface S is a map w(p) ∈ TpS for

each p ∈ U

� It is differentiable at p if for some local parametrisation σ(u, v), the functions
a(u, v) and b(u, v) given by

w(p) = a(u, v)σu + b(u, v)σv

are differentiable at p (this definition does not depend on the choice of σ)

� Trajectories of w can be defined similarly as in the case of R2

� Previous properties about trajectories extend to surfaces (in particular results
about existence of a local flow and local first integral)
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Vector Fields on a Surface M I
A

Examples
� The vector field obtained by parametrising the meridians of the torus in arc

length and taking w(p) to be the corresponding tangent vector

� Similar procedure for the semimeridians of a sphere gives a vector field on S2
minus the poles

� Reparametrise all semimeridians of a sphere with same parameter −1 < t < 1
and define v(p) = (1− t2)w(p) for points different than the poles and v = 0 at
the poles

� There is no differentiable vector field w over all S2 such that ||w|| > 0 (hairy ball
theorem)
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Vector Fields on a Surface M I
A

Vector Fields on a Surface
Let w1, w2 be vector fields in an open U of the regular surface S which are linearly
independent at some p ∈ U.

� Theorem: There exists parametrisation of a neighborhood of p, V ⊂ U, such
that the coordinate lines of this parametrisation passing through q are tangent to
the lines spanned by w1(q), w2(q)

� Corollary: For all p ∈ S there exists a parametrisation σ(u, v) such that the
curves u = const, v = const, intersect orthogonally for each q ∈ V

Such a σ is called orthogonal parametrisation.
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Covariant Derivative M I
A

Covariant Derivative
� Let w be a vector field on U, p ∈ U, and v ∈ TpS

� Let α be a be a curve s.t. α(0) = p and α′(0) = v and consider w restricted to α

� The covariant derivative of w relative to v at p is the normal projection of dwdt (0)

onto TpS. It is denoted with Dw
dt (0) or Dvw(p)

This definition does not depend on the choice of α. In order to prove this we make
use of the Christoffel symbols Γkij. If σ is a local parametrisation, they are defined by:

σuu =Γ1
11σu + Γ2

11σu + L1N,

σuv =Γ1
12σu + Γ2

12σu + L2N,

σvu =Γ1
21σu + Γ2

21σu + L̄2N,

σvv =Γ1
22σu + Γ2

22σu + L3N

Remark: All geometric concepts and properties expresses in terms of the Christoffel
symbols are invariant under isometries (in particular Euclidean transformations).
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Covariant Derivative M I
A

Covariant Derivative
The definition of covariant derivative does not depend on the choice of α. In fact
letting

w(t) = a(u(t), v(t))σu + b(u(t), v(t))σv = a(t)σu + b(t)σv

we get that

Dw

dt
=(a′ + Γ1

11au
′ + Γ1

12av
′ + Γ1

12bu
′ + Γ1

22bv
′)σu+ (1)

(b′ + Γ2
11au

′ + Γ2
12av

′ + Γ2
12bu

′ + Γ2
22bv

′)σv.

There is no explicit dependence on α
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Covariant Derivative M I
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Covariant Derivative
� Let α : I → S be a curve in the surface S. A vector field w along α is a map
w(t) ∈ Tα(t)S, for each t ∈ I. It is differentiable if that is the case for its
components in some local parametrisation.

� If w is a differentiable vector field along α : I → S. the covariant derivative of w
at t, Dwdt , is well defined for all t ∈ I. It given by (eq. (1) slide 9)

Dw

dt
=(a′ + Γ1

11au
′ + Γ1

12av
′ + γ112bu

′ + Γ1
22bv

′)σu+

(b′ + Γ2
11au

′ + Γ2
12av

′ + Γ2
12bu

′ + Γ2
22bv

′)σv

� From the point of view external to the surface it corresponds to the projection of
dw
dt (t) onto the tangent plane Tα(t)S.

Intutitively Dα′

dt is the acceleration of the point α(t) ”as seen from the surface”

Remark: All geometric concepts and properties expresses in terms of the Christoffel
symbols are invariant under isometries (in particular under Euclidean transformations).
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A

Parallel Vector Field along a Curve
� A vector field w along a curve α : I → S is said to be parallel if Dwdt = 0 for

every t ∈ I

� Lemma: If w and w̃ are parallel fields along α, then 〈w(t), w̃(t)〉 is constant.
In particular ||w(t)||, ||w̃(t)|| and the angle they form are constant
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Parallel Transport M I
A

Parallel Transport
Let α : I → S be a curve in S and let w0 ∈ Tα(t0)S, t0 ∈ I, then:

� Theorem: There exists a unique parallel vector field w(t) along α(t) with
w(t0) = w0

� The vector w(t1), t1 ∈ I is called the parallel transport of w0 along α at point t1

� If α is regular, the parallel transport does not depend on the parametrisation of α
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Parallel Transport M I
A

Parallel Transport
Examples:

� If S is a plane parallel transport corresponds to a constant vector along α

� The tangent vector field of a meridian of a sphere parametrised by arc length
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A

Definition of Geodesic
� A nonconstant parametrised curve γ : I → S is said to be geodesic at t ∈ I if

Dγ′(t)

dt
= 0.

It is a parametrised geodesic if it is geodesic for all t ∈ I

� We have that for a parametrised geodesic ||γ′(t)|| is constant and nonzero. Thus
we may introduce the arc length s = ct as a parameter. The parameter t of a
parametrised geodesic γ is thus proportional to the length of γ.

� On the plane only straight lines are geodesic at each point
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