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Lecture 10:

¢ Role of Gaussian Curvature
¢ Surface evolutions in Euclidean Space

¢ Curvature motion processes for surfaces
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Surface Evolutions

Surface Evolutions in R?

¢ Consider surfaces parametrised by connected domain D ¢ R?
¢ Introduce additional time parameter ¢t € [0,7], T > 0
# Surface evolution: differentiable function o : D x [0,7] — R
e For each fixed t, o(-, %) is a surface
e Initial surface: o¢(u) = o(u,0)
e For each fixed u € D, o(u,-) is the “trajectory” of a surface point

e Time derivative o, is called surface flow




Surface Evolutions

Decompositions of Surface Evolutions in R?
Consider now a surface evolution in R® with Euclidean metric

@ Surface flow can be written as
9o (u,t)

5 = a1 (u, t)t1(u, ) + az(u, t)iz(u, t) + A(u, t)i(u, t)

@ Assume that 8(u,t) = S(o(u,t),t) depends on the surface graphs o(u,t)
and t only (but not explicitly on the surface parametrisation u)

¢ Similarly as for curve evolutions, one has that the evolution
06(u,t)
o

describes the same family of surface images, i.e. 5(-,t) is a reparametrisation
of o(-,t) for each t

B(5(u,t),t)7i(5(u,t),t)

@ The shape of a surface ¢ is not changed by a flow ¢ L 7 (apart from cut-off
at the boundary)
The normal flow is what governs the shape evolution

¢ Proof similarly as for curves




Surface Evolutions

Evolution of Level Surfaces

¢ Consider 3D image evolution:
smooth function U : E x [0,T] — R for 3D domain E

# Let surface evolution o : D x [0, 7] — R? describe zero-level surface of U at
each t € [0,T]

@ Orientation convention: The surface o is oriented such that the surface
normal 7 points to the region with smaller values of U, i.e.

- YU
VU

¢ Vice versa, an image (evolution) can be defined for a given surface
(evolution) by signed distance functions analogous to the 2D case




Surface Evolutions

Evolution of Level Surfaces, cont.

¢ Image flow

% — pay =0 IV (.y,2) € B, te0,T]

corresponds to surface flow

= Blo(u,,t),0) iw0,t), (ww) €D, LE[0,T]

¢ Proof: Analogous to curve evolution in 2D




Dilation and Erosion in 3D

Dilation and Erosion Flows in 3D

¢ Simplest example: 8 = const

¢ Surface evolution:

(—: dilation, +: erosion)

¢ Image evolution:
Uy ==+ ||VU]|

(+4: dilation, —: erosion)

¢ Properties of dilation and erosion are similar to the 2D case




Curvature Motion Processes in 3D

Possible Curvature Motions in 3D

¢ Goal: Generalise curvature flow to surfaces in 3D
e Application: e.g., smoothing of laser-scanned 3D surface data
¢ Difficulty: two principal curvatures (instead of a single curvature in 2D)

¢ Consequence: Several possibilities for surface evolutions corresponding to
Euclidean curvature flow

4 Candidates based on Euclidean invariants:
e Mean curvature H = %(m + K2)

e Gauss curvature K = k1Ko




Curvature Motion Processes in 3D

Mean Curvature Motion in 3D
¢ Use 8 =2H (= k1 + k2), then we have the surface evolution
oy =2H7
equivalent to the image evolution
U: =2H ||VU]||

¢ Image evolution can be rewritten into

vU
U, = ||VU| div ———=7




Curvature Motion Processes in 3D

Mean Curvature Motion in 3D, Equivalences
¢ Equivalent description of the image evolution as smoothing along level sets
Up = Uge + Uy
where £(z, vy, 2),n(z,y,2) L VU(z,y, z) are orthogonal unit vectors,
&(z,y,2) L n(z,y,2), for each z,y,z € E

¢ Equivalent reformulation of surface evolution as smoothing of surface
coordinates

Ot = Ouu + Ouo
if o, 0, are unit vectors and o, L o,

¢ Equivalent variational description: gradient descent for surface area

Elo] = //,/det Ly dudv




Curvature Motion Processes in 3D

Properties of 3D Mean Curvature Motion

Mean curvature motion as surface evolution:

O'tIQH’I_?:,

& Convex shapes shrink and evolve into “spherical’ points
¢ Non-convex shapes do not necessarily stay connected

¢ Evolutions of non-convex shapes can include singularities
¢ Inclusions of surfaces are preserved

Mean curvature motion as image evolution:

Ui =Uee + Upy , §lmn &n Ll VU

¢ Mean curvature motion is morphologically invariant




Curvature Motion Processes in 3D

3D Mean Curvature Motion Examples

Top, left to right: “Dumbbell” surface and three stages of its evolution by mean curvature
motion at progressive times (¢t = 5, t = 7, t = 8). The non-convex shape decomposes
and develops singularities. Bottom: Same for “bent dumbbell” surface (t = 1, t = 2,
t = 3) (after Caselles, Sbert 1996)




Curvature Motion Processes in 3D

Surface Denoising by 3D Mean Curvature Motion

Left to right: Noisy octahedron — smoothed by mean curvature motion — noisy “Stanford
bunny” — smoothed by mean curvature motion (Clarenz, Diewald, Rumpf 2000)




Curvature Motion Processes in 3D

An Affine Invariant 3D Curvature Motion

¢ Based on Gaussian curvature K
¢ Let [K]; := max(K,0) and
45
o = sgn(r) - ((K]4)V 7
¢ Note that locations with negative Gaussian curvature do not move at all
¢ This flow is affine invariant

¢ It avoids singularities in a number of cases such as the dumbbell

¢ However, singularities can still occur




Curvature Motion Processes in 3D

An Affine Invariant 3D Curvature Motion — Examples

Top left to bottom right in rows: “Dumbbell” surface and five stages (¢t = 5, t = 10,
t =15, t = 20, t = 25) of its evolution by ot = sgn(k1) - ([K]4)'/4 . The non-convex
shape stays connected and develops into a convex shape (after Caselles, Shert 1996)




Curvature Motion Processes in 3D

Comparison of 3D MCM and Affine Invariant
Curvature Motion

(e][e][e][e]
(e][e][e][e]

Top, left to right: Torus surface and three stages of its evolution under mean curvature
motion (¢t =7, t = 14, t = 21). Bottom, left to right: Torus surface and three stages of
its evolution under oy = sgn(k1) - ([K]4+)Y/4 7 (t = 10, t = 20, t = 30). Note that the
inner equator does not move (as the Gaussian curvature remains always negative here)
(after Caselles, Sbert 1996)




Curvature Motion Processes in 3D

Comparison of 3D MCM and Affine Invariant
Curvature Motion
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Top, left to right: Cross-section of the torus surface from the previous slide and three
stages of its evolution under mean curvature motion (¢t = 7, t = 14, t = 21). Bottom,

left to right: Same for the affine invariant curvature motion oy = sgn(k1) - ([K]+)Y/* 7
(t =10, t = 20, t = 30).




Curvature Motion Processes in 3D

An Affine Invariant 3D Curvature Motion — Examples

7\

Top left to bottom right in rows: “Bent dumbbell” surface and five stages of its evolution
by o¢ = sgn(r1) - ([K]+)Y/47 (t =2, t =4, t =7, t = 10, t = 25). This non-convex
shape decomposes and develops singularities. (after Caselles, Sbert 1996)




Curvature Motion Processes in 3D

Singularity—Free 3D Curvature Motion (Approach)

# A singularity-free curvature dependent motion can be based on minimising

Elo] := // K* do(u,v)

¢ Leads to higher order differential equation
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