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Surface Evolutions

Surface Evolutions in IRd

p Consider surfaces parametrised by connected domain D ⊂ IR2

p

p

Introduce additional time parameter t ∈ [0, T ], T ≥ 0

Surface evolution: differentiable function σ : D × [0, T ]→ IRd

a For each fixed t, σ(·, t) is a surface

a Initial surface: σ0(u) = σ(u, 0)

a For each fixed u ∈ D, σ(u, ·) is the “trajectory” of a surface point

a Time derivative σt is called surface flow
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Surface Evolutions

Decompositions of Surface Evolutions in IR3

Consider now a surface evolution in IR3 with Euclidean metric

p Surface flow can be written as

∂σ(u, t)

∂t
= α1(u, t)t~1(u, t) + α2(u, t)t~2(u, t) + β(u, t)~n(u, t)

p

p

Assume that β(u, t) = β̃(σ(u, t), t) depends on the surface graphs σ(u, t)
and t only (but not explicitly on the surface parametrisation u)

Similarly as for curve evolutions, one has that the evolution

∂σ̃(u, t)

∂t
= β̃(σ̃(u, t), t)~n(σ̃(u, t), t)

p

p

describes the same family of surface images, i.e. σ̃(·, t) is a reparametrisation
of σ(·, t) for each t

The shape of a surface σ is not changed by a flow σt ⊥ ~n (apart from cut-off
at the boundary)
The normal flow is what governs the shape evolution

Proof similarly as for curves
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Surface Evolutions

Evolution of Level Surfaces

p

p

p

Consider 3D image evolution:
smooth function U : E × [0, T ]→ IR for 3D domain E

Let surface evolution σ : D × [0, T ]→ IR3 describe zero-level surface of U at
each t ∈ [0, T ]

Orientation convention: The surface σ is oriented such that the surface
normal ~n points to the region with smaller values of U , i.e.

~n = − ∇U‖∇U‖

p Vice versa, an image (evolution) can be defined for a given surface
(evolution) by signed distance functions analogous to the 2D case 19
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Surface Evolutions

Evolution of Level Surfaces, cont.

p Image flow

∂U

∂t
= β(x, y, z, t) · ‖∇U‖ , (x, y, z) ∈ E, t ∈ [0, T ]

corresponds to surface flow

∂σ

∂t
= β(σ(u, v, t), t) · ~n(u, v, t) , (u, v) ∈ D, t ∈ [0, T ]

p Proof: Analogous to curve evolution in 2D
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Dilation and Erosion in 3D

Dilation and Erosion Flows in 3D

p

p

σt = ±~n

p

Simplest example: β = const

Surface evolution:

(−: dilation, +: erosion)

Image evolution:
Ut = ±‖∇U‖

p

(+: dilation, −: erosion)

Properties of dilation and erosion are similar to the 2D case
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Curvature Motion Processes in 3D

Possible Curvature Motions in 3D

p

p

p

p

2

Goal: Generalise curvature flow to surfaces in 3D

a Application: e.g., smoothing of laser-scanned 3D surface data

Difficulty: two principal curvatures (instead of a single curvature in 2D)

Consequence: Several possibilities for surface evolutions corresponding to
Euclidean curvature flow

Candidates based on Euclidean invariants:

a Mean curvature H = 1 (κ1 + κ2)

a Gauss curvature K = κ1κ2
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Curvature Motion Processes in 3D

Mean Curvature Motion in 3D

p Use β = 2H ( = κ1 + κ2), then we have the surface evolution

σt = 2H~n

equivalent to the image evolution

Ut = 2H ‖∇U‖

p Image evolution can be rewritten into

Ut = ‖∇U‖ div
∇U
‖∇U‖
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Curvature Motion Processes in 3D

Mean Curvature Motion in 3D, Equivalences

p Equivalent description of the image evolution as smoothing along level sets

Ut = Uξξ + Uηη

p

p

E[σ] =

σ

where ξ(x, y, z), η(x, y, z) ⊥ ∇U(x, y, z) are orthogonal unit vectors,
ξ(x, y, z) ⊥ η(x, y, z), for each x, y, z ∈ E

Equivalent reformulation of surface evolution as smoothing of surface
coordinates

σt = σuu + σvv

if σu, σv are unit vectors and σu ⊥ σv
Equivalent variational description: gradient descent for surface area∫∫ √

det I(u,v) du dv

19



1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

M I
A

Curvature Motion Processes in 3D

Properties of 3D Mean Curvature Motion
Mean curvature motion as surface evolution:

σt = 2H~n ,

p Convex shapes shrink and evolve into “spherical” points

p Non-convex shapes do not necessarily stay connected

p Evolutions of non-convex shapes can include singularities

p Inclusions of surfaces are preserved

Mean curvature motion as image evolution:

Ut = Uξξ + Uηη , ξ ⊥ η; ξ, η ⊥ ∇U

p Mean curvature motion is morphologically invariant
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Curvature Motion Processes in 3D

3D Mean Curvature Motion Examples

Top, left to right: “Dumbbell” surface and three stages of its evolution by mean curvature
motion at progressive times (t = 5, t = 7, t = 8). The non-convex shape decomposes
and develops singularities. Bottom: Same for “bent dumbbell” surface (t = 1, t = 2,
t = 3) (after Caselles, Sbert 1996)

19



1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

M I
A

Curvature Motion Processes in 3D

Surface Denoising by 3D Mean Curvature Motion

Left to right: Noisy octahedron – smoothed by mean curvature motion – noisy “Stanford
bunny” – smoothed by mean curvature motion (Clarenz, Diewald, Rumpf 2000)
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Curvature Motion Processes in 3D

An Affine Invariant 3D Curvature Motion

p

p

p

p

p

p

Based on Gaussian curvature K

Let [K]+ := max(K, 0) and

σt = sgn(κ1) · ([K]+)1/4 ~n

Note that locations with negative Gaussian curvature do not move at all

This flow is affine invariant

It avoids singularities in a number of cases such as the dumbbell

However, singularities can still occur
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Curvature Motion Processes in 3D

An Affine Invariant 3D Curvature Motion – Examples

Top left to bottom right in rows: “Dumbbell” surface and five stages (t = 5, t = 10,
t = 15, t = 20, t = 25) of its evolution by σt = sgn(κ1) · ([K]+)1/4 ~n. The non-convex
shape stays connected and develops into a convex shape (after Caselles, Sbert 1996)
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Curvature Motion Processes in 3D

Comparison of 3D MCM and Affine Invariant
Curvature Motion

Top, left to right: Torus surface and three stages of its evolution under mean curvature
motion (t = 7, t = 14, t = 21). Bottom, left to right: Torus surface and three stages of
its evolution under σt = sgn(κ1) · ([K]+)1/4 ~n (t = 10, t = 20, t = 30). Note that the
inner equator does not move (as the Gaussian curvature remains always negative here)
(after Caselles, Sbert 1996)
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Curvature Motion Processes in 3D

Comparison of 3D MCM and Affine Invariant
Curvature Motion

Top, left to right: Cross-section of the torus surface from the previous slide and three
stages of its evolution under mean curvature motion (t = 7, t = 14, t = 21). Bottom,
left to right: Same for the affine invariant curvature motion σt = sgn(κ1) · ([K]+)1/4 ~n
(t = 10, t = 20, t = 30).
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Curvature Motion Processes in 3D

An Affine Invariant 3D Curvature Motion – Examples

Top left to bottom right in rows: “Bent dumbbell” surface and five stages of its evolution
by σt = sgn(κ1) · ([K]+)1/4 ~n (t = 2, t = 4, t = 7, t = 10, t = 25). This non-convex
shape decomposes and develops singularities. (after Caselles, Sbert 1996)
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Curvature Motion Processes in 3D

Singularity–Free 3D Curvature Motion (Approach)

p A singularity-free curvature dependent motion can be based on minimising

E[σ] :=

∫∫
σ

K2 dσ(u, v)

p Leads to higher order differential equation
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