
Lecture 9 M I
A

Lecture 9
� Second Fundamental Form

� Curvature of a Surface

� Examples

� Gauss Egregium Theorem
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Second Fundamental Form M I
A

Shape Operator
Let M by an oriented regular surface having Gaussian map N.

� A differentiable map N :M → S2 is said to be a Gauss map for M if
N(p) ⊥ TpM, for each p ∈M

� We can identify TpM ∼= TN(p)S2

� The shape operator Sp : TpM → TpM is the linear map given by
Sp(v) = −DN(p)(v), for all v ∈ TpM.

Claim: Let M be a path connected, oriented regular surface with Gaussian map.
Then Sp vanishes for all p ∈M if and only if M is contained in a plane.
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Second Fundamental Form M I
A

Shape Operator
� The second fundamental form of M at p, IIp : TpM × TpM → R is given by

IIp(v,w) = 〈Sp(v),w〉 , v,w ∈ TpM

� Sp is a symmetric bilinear map. Therefore, so is IIp
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Second Fundamental Form M I
A

Local parametrisation
Let φ : U → φ(U) be a local parametrisation of an oriented regular surface M.

� In local coordinates (i.e. w.r.t. the basis φu, φv,) Sp = Sφ(u), is given by
Su(w) = Aw, for all u ∈ U, and w ∈ R2 ∼= Tu(U), where

A =

[
E F
F G

]−1
·
[
e f
f g

]
with

E = 〈φu, φu〉 , F = 〈φu, φv〉 , G 〈φv, φv〉
and

e = −〈φu, Nu〉 , f = −〈φu, Nv〉 = −〈φv, Nu〉 , g = −〈φv, Nv〉

� In local coordinates the second fundamental form IIp = IIφ(u), is given by

IIu(v,w) = 〈Dφ(u)v, Sp(Dφ(u)w)〉 =
〈
v,

[
e f
f g

]
·w

〉
for all u ∈ U, and v,w ∈ R2 ∼= Tu(U)
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Second Fundamental Form M I
A

Transformation Properties of the Second Fundamental
Form
Let σ be a parametrised surface.

� The second fundamental form is invariant under Euclidean transformations of R3:
For ψ : x→ Ax+ b, A ∈ O(3,R), b ∈ R3, and σ̃ := ψ ◦ σ one has

ĨIu(v,w) = IIu(v,w) · sgn detDψ

where IIu is second fundamental form of σ̃ and sgn detDψ = sgn detA

� The second fundamental form transforms under reparametrisations as follows:
Let σ̃ := σ ◦ φ, φ : D̃ → D, then

ĨIu(v,w) = IIφ(u)(Dφ(v),Dφ(w)) · sgndetDφ

where ĨIu is second fundamental form of σ̃
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Curvature of Surfaces M I
A

Normal Curvature
Let M by an oriented regular surface having Gaussian map N. Let p ∈M and
v ∈ TpM s.t. ||v|| = 1.

� The normal curvature κn(v) of M at p in the direction of v is defined by

κn(v) = 〈γ′′(0), N(p)〉 ,

with γ any regular curve in arc-length parametrisation s.t. γ(0) = p, γ′(0) = v

� Recall that if γ : I →M be a curve parametrised by arc-length with γ(0) = p
and If γ′′(0) = γ′′θ (0) + γ′′ν (0) with γ′′θ (0) ∈ TpM and γ′′ν (0) ⊥ TpM, then

γ′′ν (0) = 〈γ′′(0), N(p)〉N(p) = −〈γ′(0), DN(p)γ′(0)〉N(p)

� Therefore, the normal curvature κn(v) of M at p in the direction of v satisfies

κn(v) = 〈v, Sp(v)〉 = IIp(v,v)
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Curvature of Surfaces M I
A

Principal Curvatures
Let M by an oriented regular surface having Gaussian map N.

� With T 1
pM := {v ∈ TpM : ||v|| = 1} , κn : T 1

pM → R is a continuous map

� There exist two directions v1,v2 ∈ T 1
pM s.t.

κ1(p) := κn(v1) = max
v∈T 1

pM
κn(v)

κ2(p) := κn(v2) = min
v∈T 1

pM
κn(v)

called principal curvatures. v1,v2 are called principal directions
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Curvature of Surfaces M I
A

Principal Curvatures
Since Sp is symmetric (thus also IIp), it follows from the spectral theorem:

� There exists an orthonormal basis v1,v2 of TpM s.t.

Sp(v1) = λ1v1 Sp(v2) = λ2v2

for λ1, λ2 ∈ R

� v ∈ T 1
pM is a principle direction if and only if it is an eigenvector of the shape

operator Sp (thus λ1 = κ1, λ2 = κ2).
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Curvature of Surfaces M I
A

Gaussian and Mean Curvature
Let M by an oriented regular surface having Gaussian map N :M → S2, and
Sp : TpM → TpM be the shape operator.

� Gaussian curvature:
K(p) = detSp

� Mean Curvature:

H(p) =
1

2
trace (Sp)

� Let v1,v2 be an orthonormal basis of TpM s.t.

Sp(v1) = λ1v1 and Sp(v2) = λ2v2,

then λ1, λ2 are principal curvatures and

K(p) = λ1λ2 = κ1κ2, H =
1

2
(κ1 + κ2) =

1

2
(λ1 + λ2).

� The surface M is said to be flat if K(p) = 0 for all p ∈M and minimal if
H(p) = 0 for all p ∈M.
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Curvature of Surfaces M I
A

Gaussian and Mean Curvature
Let α1, α2 : I →M be curves s.t. α′1(0) = v1 and α′2(0) = v2 and

κ1 = 〈Sp(v1),v1〉 =< α′′1(0), N(p) >

κ2 = 〈Sp(v2),v2〉 =< α′′2(0), N(p) >

� If K(p) = κ1κ2 > 0 the curves α1, α2 stay locally on the same side of the tangent
plane. Thus, all curves going through p stay locally on the same side of the plane

� If K(p) = κ1κ2 < 0 they stay locally on different sides of the tangent plane

We call p an umbilic point if κ1(p) = κ2(p).

� If every point of a path-connected oriented regular surface M is an umbilic point,
then M is either contained in a plane or in a sphere.
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Curvature of Surfaces M I
A

Local Parametrisation
� Let φ : U → φ(U) be a local parametrisation of an oriented regular surface M.

� In local coordinates the gaussian and mean curvatures are given by

K(p) =
eg − f2

EG− F 2

H(p) =
1

2
· eG− efF + gE

EG− F 2

with e, f, g, E, F,G defined in slide 4
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Curvature of Surfaces M I
A

Curvature of Surfaces
� Definition of principal curvatures relies on the embedding of the surface into R3

� Principal curvatures therefore depend on this embedding, and change under
isometric deformations of the surface

� Is there a quantity that depends only on the Riemannian manifold structure of
the surface, i.e., it is independent on the embedding?
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Role of the Gaussian Theorem M I
A

Gauss’ Theorem
The Gaussian curvature K of a surface depends only on its inner metric.

Consequences:

� The Gaussian curvature of a 2D manifold embedded into R3 does not depend on
the embedding

� Isometric deformations of a surface in R3 do not change the Gaussian curvature

� The metric of a surface (given by its first fundamental form) is (pointwise)
hyperbolic, planar or elliptic
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Outlook and References M I
A

Outlook
� Surface evolutions

� Curvature motion processes for surfaces

� Diffusion on surfaces

� Diffusion smoothing of surfaces

References
� G. Sapiro: Geometric Partial Differential Equations and Image Analysis.

Cambridge University Press 2001

� W. Haack: Differential-Geometrie, Teil I. Wolfenbtteler Verlagsanstalt,
Wolfenbttel 1948 (in German)
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