Lecture 9

- Second Fundamental Form
- Curvature of a Surface
- Examples
- Gauss Egregium Theorem

Shape Operator

Let M by an oriented regular surface having Gaussian map N.

- A differentiable map $N: M \to \mathbb{S}^2$ is said to be a Gauss map for M if $N(p) \perp T_p M$, for each $p \in M$
- We can identify $T_p M \cong T_{N(p)} \mathbb{S}^2$
- The shape operator $S_p: T_pM \to T_pM$ is the linear map given by $S_p(\boldsymbol{v}) = -\mathsf{D}N(p)(\boldsymbol{v})$, for all $\boldsymbol{v} \in T_pM$.

Claim: Let M be a path connected, oriented regular surface with Gaussian map. Then S_p vanishes for all $p \in M$ if and only if M is contained in a plane.

Shape Operator

• The second fundamental form of M at p, $\mathbf{II}_{\mathbf{p}}: T_pM \times T_pM \to \mathbb{R}$ is given by

 $\mathbf{II}_{\mathbf{p}}(\boldsymbol{v}, \boldsymbol{w}) = \langle S_p(\boldsymbol{v}), \boldsymbol{w} \rangle, \quad \boldsymbol{v}, \boldsymbol{w} \in T_p M$

• S_p is a symmetric bilinear map. Therefore, so is \mathbf{II}_p

Local parametrisation

Let $\phi: U \to \phi(U)$ be a local parametrisation of an oriented regular surface M.

• In local coordinates (i.e. w.r.t. the basis ϕ_u, ϕ_v ,) $S_p = S_{\phi(u)}$, is given by $S_u(w) = Aw$, for all $u \in U$, and $w \in \mathbb{R}^2 \cong T_u(U)$, where

$$A = \begin{bmatrix} E & F \\ F & G \end{bmatrix}^{-1} \cdot \begin{bmatrix} e & f \\ f & g \end{bmatrix}$$

with

$$E = \langle \phi_u, \phi_u \rangle, \quad F = \langle \phi_u, \phi_v \rangle, \quad G \langle \phi_v, \phi_v \rangle$$

and

$$e = -\langle \phi_u, N_u \rangle, \quad f = -\langle \phi_u, N_v \rangle = -\langle \phi_v, N_u \rangle, \quad g = -\langle \phi_v, N_v \rangle$$

• In local coordinates the second fundamental form $\mathbf{II}_p = \mathbf{II}_{\phi(\boldsymbol{u})}$, is given by

$$\mathbf{II}_{\boldsymbol{u}}(\boldsymbol{v},\boldsymbol{w}) = \langle \mathsf{D}\phi(\boldsymbol{u})\boldsymbol{v}, S_p(\mathsf{D}\phi(\boldsymbol{u})\boldsymbol{w}) \rangle = \left\langle \boldsymbol{v}, \begin{bmatrix} e & f \\ f & g \end{bmatrix} \cdot \boldsymbol{w} \right\rangle$$

for all $\boldsymbol{u} \in U$, and $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2 \cong T_{\boldsymbol{u}}(U)$

Transformation Properties of the Second Fundamental Form

Let σ be a parametrised surface.

• The second fundamental form is invariant under Euclidean transformations of \mathbb{R}^3 : For $\psi: x \to Ax + b, A \in O(3, \mathbb{R}), b \in \mathbb{R}^3$, and $\tilde{\sigma} := \psi \circ \sigma$ one has

 $\tilde{\mathbf{II}}_{\boldsymbol{u}}(\boldsymbol{v},\boldsymbol{w}) = \mathbf{II}_{\boldsymbol{u}}(\boldsymbol{v},\boldsymbol{w}) \cdot \operatorname{sgn} \det \mathsf{D}\psi$

where $\mathbf{II}_{\boldsymbol{u}}$ is second fundamental form of $\tilde{\sigma}$ and sgn det $\mathsf{D}\psi = \mathsf{sgn} \det A$

• The second fundamental form transforms under reparametrisations as follows: Let $\tilde{\sigma} := \sigma \circ \phi, \phi : \tilde{D} \to D$, then

$$\tilde{\mathbf{II}}_{\boldsymbol{u}}(\boldsymbol{v},\boldsymbol{w}) = \mathbf{II}_{\phi(\boldsymbol{u})}(\mathsf{D}\phi(\boldsymbol{v}),\mathsf{D}\phi(\boldsymbol{w}))\cdot\mathsf{sgn}\det\mathsf{D}\phi$$

where $\tilde{\mathbf{II}}_{\boldsymbol{u}}$ is second fundamental form of $\tilde{\sigma}$

Normal Curvature

Let M by an oriented regular surface having Gaussian map N. Let $p \in M$ and $v \in T_pM$ s.t. ||v|| = 1.

• The normal curvature $\kappa_n(v)$ of M at p in the direction of v is defined by

$$\kappa_n(\boldsymbol{v}) = \langle \gamma''(0), N(p) \rangle,$$

with γ any regular curve in arc-length parametrisation s.t. $\gamma(0)=p, \gamma'(0)={\pmb v}$

• Recall that if $\gamma: I \to M$ be a curve parametrised by arc-length with $\gamma(0) = p$ and If $\gamma''(0) = \gamma_{\theta}''(0) + \gamma_{\nu}''(0)$ with $\gamma_{\theta}''(0) \in T_pM$ and $\gamma_{\nu}''(0) \perp T_pM$, then

$$\gamma_{\nu}^{\prime\prime}(0) = \langle \gamma^{\prime\prime}(0), N(p) \rangle N(p) = - \langle \gamma^{\prime}(0), DN(p) \gamma^{\prime}(0) \rangle N(p)$$

• Therefore, the normal curvature $\kappa_n(oldsymbol{v})$ of M at p in the direction of $oldsymbol{v}$ satisfies

$$\kappa_n(\boldsymbol{v}) = \langle \boldsymbol{v}, S_p(\boldsymbol{v}) \rangle = \mathbf{II}_{\mathbf{p}}(\boldsymbol{v}, \boldsymbol{v})$$

Principal Curvatures

Let M by an oriented regular surface having Gaussian map N.

• With $T_p^1 M := \{ \boldsymbol{v} \in T_p M : ||\boldsymbol{v}|| = 1 \}, \, \kappa_n : T_p^1 M \to \mathbb{R} \text{ is a continuous map} \}$

• There exist two directions $oldsymbol{v}_1, oldsymbol{v}_2 \in T_p^1M$ s.t.

$$\kappa_1(p) := \kappa_n(\boldsymbol{v}_1) = \max_{\boldsymbol{v} \in T_p^1 M} \kappa_n(\boldsymbol{v})$$
$$\kappa_2(p) := \kappa_n(\boldsymbol{v}_2) = \min_{\boldsymbol{v} \in T_p^1 M} \kappa_n(\boldsymbol{v})$$

called principal curvatures. $oldsymbol{v}_1, oldsymbol{v}_2$ are called principal directions

Principal Curvatures

Since S_p is symmetric (thus also II_p), it follows from the spectral theorem:

• There exists an orthonormal basis $\boldsymbol{v}_1, \boldsymbol{v}_2$ of T_pM s.t.

 $S_p(\boldsymbol{v}_1) = \lambda_1 \boldsymbol{v}_1 \quad S_p(\boldsymbol{v}_2) = \lambda_2 \boldsymbol{v}_2$

for $\lambda_1,\lambda_2\in\mathbb{R}$

• $v \in T_p^1 M$ is a principle direction if and only if it is an eigenvector of the shape operator S_p (thus $\lambda_1 = \kappa_1, \lambda_2 = \kappa_2$).

Gaussian and Mean Curvature

Let M by an oriented regular surface having Gaussian map $N: M \to \mathbb{S}^2$, and $S_p: T_pM \to T_pM$ be the shape operator.

• Gaussian curvature:

$$\mathbf{K}(p) = \det S_p$$

Mean Curvature:

$$\mathbf{H}(p) = \frac{1}{2}\operatorname{trace}\left(S_p\right)$$

• Let $oldsymbol{v}_1, oldsymbol{v}_2$ be an orthonormal basis of T_pM s.t.

$$S_p(oldsymbol{v}_1) = \lambda_1 oldsymbol{v}_1$$
 and $S_p(oldsymbol{v}_2) = \lambda_2 oldsymbol{v}_2,$

then λ_1, λ_2 are principal curvatures and

$$\mathbf{K}(p) = \lambda_1 \lambda_2 = \kappa_1 \kappa_2, \quad \mathbf{H} = \frac{1}{2}(\kappa_1 + \kappa_2) = \frac{1}{2}(\lambda_1 + \lambda_2).$$

The surface M is said to be flat if $\mathbf{K}(p) = 0$ for all $p \in M$ and minimal if $\mathbf{H}(p) = 0$ for all $p \in M$.

Gaussian and Mean Curvature

Let $\alpha_1, \alpha_2: I \to M$ be curves s.t. $\alpha_1'(0) = \boldsymbol{v}_1$ and $\alpha_2'(0) = \boldsymbol{v}_2$ and

 $\kappa_1 = \langle S_p(\boldsymbol{v}_1), \boldsymbol{v}_1 \rangle = < \alpha_1''(0), N(p) >$ $\kappa_2 = \langle S_p(\boldsymbol{v}_2), \boldsymbol{v}_2 \rangle = < \alpha_2''(0), N(p) >$

- If $\mathbf{K}(p) = \kappa_1 \kappa_2 > 0$ the curves α_1, α_2 stay locally on the same side of the tangent plane. Thus, all curves going through p stay locally on the same side of the plane
- If $\mathbf{K}(p) = \kappa_1 \kappa_2 < 0$ they stay locally on different sides of the tangent plane

We call p an umbilic point if $\kappa_1(p) = \kappa_2(p)$.

 If every point of a path-connected oriented regular surface M is an umbilic point, then M is either contained in a plane or in a sphere.

Local Parametrisation

- Let $\phi: U \to \phi(U)$ be a local parametrisation of an oriented regular surface M.
- In local coordinates the gaussian and mean curvatures are given by

$$\begin{split} \mathbf{K}(p) &= \frac{eg - f^2}{EG - F^2} \\ \mathbf{H}(p) &= \frac{1}{2} \cdot \frac{eG - efF + gE}{EG - F^2} \end{split}$$

with e, f, g, E, F, G defined in slide 4

Curvature of Surfaces

- igstarrow Definition of principal curvatures relies on the embedding of the surface into \mathbb{R}^3
- Principal curvatures therefore depend on this embedding, and change under isometric deformations of the surface
- Is there a quantity that depends only on the Riemannian manifold structure of the surface, i.e., it is independent on the embedding?

Gauss' Theorem

The Gaussian curvature ${\bf K}$ of a surface depends only on its inner metric.

Consequences:

- The Gaussian curvature of a 2D manifold embedded into \mathbb{R}^3 does not depend on the embedding
- ullet Isometric deformations of a surface in \mathbb{R}^3 do not change the Gaussian curvature
- The metric of a surface (given by its first fundamental form) is (pointwise) hyperbolic, planar or elliptic

Outlook

- Surface evolutions
- Curvature motion processes for surfaces
- Diffusion on surfaces
- Diffusion smoothing of surfaces

References

- G. Sapiro: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press 2001
- W. Haack: Differential-Geometrie, Teil I. Wolfenbtteler Verlagsanstalt, Wolfenbttel 1948 (in German)