Lecture 8

Lecture 8

® Regular Surfaces as 2-Dimensional Manifolds
® Constructing Surfaces (Implicit Mapping Theorem)
® Shape Operator

€ Second Fundamental Form
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2-Dimensional Manifolds in R?

Topological concepts (Continuous Mappings)
® Let U C R? be an open set, and ¢ : U — R3.

® Assume that ¢ : U — ¢(U) is bijective, with inverse 1) = ¢~ 1. When is 9
continuous?

e Consider the induced topology of the Euclidean space R? on ¢(u):
A subset of S C M is open if S = M NV for some open set V C R3,

e 1 is continuous if )" 1(A) is an open set in the topology induced on M for
every open set A C U

® If both ¢ and v are continuous they are called homeomorphisms
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2-Dimensional Manifolds in R?

Regular Surfaces

® M C R? is a 2-dimensional manifold (regular surface), if for each point p € M
there exist open, connected and simply connected neighbourhoods U C R?,
V C R? with p € V and a bijective smooth map ¢ : U — V N M such that ¢ is
a homeomorphism and

Pu(p) X ¢u(p) # 0
for all p e U.

¢ We call any such ¢ a local parametrisation. ¢! : ¢(U) — U is a chart
® A collection A:= {(Vo N M, ¢ '), a €1} is an atlas of M if

M=JWVanM)

Remarks:

¢ To distinguish we will call reqular surfaces the 2-dim manifold embedded in R?,
and parametrised surfaces the regular maps o : D — R? of the previous lecture.

® Here and in what follows smooth mean sufficiently differentiable. If less
regularity is required it will specified
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Implicit Mapping Theorem

Inverse Mapping Theorem
® letr>0,UCR” and F: U — R"™ be C" with DF(p) : R™ — R" invertible.

® Then F is locally invertible: F|U, : U, — U, is a bijection with C" inverse
f:U,; — U, in open neighborhoods U, of U, of p and ¢ = F(p)

¢ D(f~Hq) = (Df(p)~"
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Implicit Mapping Theorem

Implicit Mapping Theorem
® Let f:U — R be C!, for U open subset of R3.

@ Let g be a regular value of f, i.e. (Vf)(p)#0forallpin M = f~1(q).

® Then M is a regular surface in R3.

Examples:
® (Sphere) FF:R® = R, F(x,y,2) = 2% + y* + 2°
® (Torus) F: {(z,y,2) : 2> +y* #0} = R, F(z,y,2) = 2 + (/2% + y> — R)?
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Differentiable Maps Between Regular Surfaces

Differentiable map

F : M, — M, is differentiable at p if there exist local parametrisations
¢p : Up = ¢p(Up) and ¢, : U, = ¢(Uy), around p and g = F'(p) s.t.

¢, o Fog¢, is differentiable.

® This definition is independent on the choice of local parametrisations

® The composition of differentiable maps between surfaces is again differentiable
® |f F is bijective with differentiable inverse it is called diffeomorphism

® Local parametrisations ¢ : U — ¢(U) are diffeomorphisms

® M, M, regular surfaces and ¢ : U — R3 differentiable with U € R? open s.t.
M, C U, My C ¢(U). Then ¢|ps, : My — My is differentiable
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Tangent Space of a Regular Surface

Tangent Space of a Surface

® Let M be a regular surface and p € M. The tangent space T,,M of M at p is the
set of all tangents ~/(0) to differentiable curves v : I — M such that y(0) = p
® The tangent space T, M of a regular surface is a 2-dimensional real vector space.
® lLet ¢ : M7 — M be differentiable between regular surfaces with p € M7 and
q € Ms, and ¢(p) = q. Then

Do(p) /(1) —+ (60l

determines a well defined linear map D¢(p) : T, M1 — T,M>, the differential or
tangent map of ¢ at p.
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First Fundamental Form of a Regular Surface

First Fundamental Form of a Regular Surface
Let M, My, M5 be regular surfaces.

¢ First fundamental form I, : T,M x T,M — R is given by the restriction of the
Euclidean scalar product of R? to T, M.

® For any local parametrisation around p € M, ¢ : U — ¢(M), the differential
D(p) "pulls back” the Euclidean scalar product to T,-1,)U

® In the local parameter region U the first fundamental form leads to a metric
induced by the scalar product

< A(q) > Ty1pyU x Ty1,)U 2R x R? - R

where

A(Q)ll =< ¢U(Q)7¢u(Q) >, A(Q)QQ —< gbv(Q)vqbv(Q) >,
A(g)12 = A(q@)21 =< du(q), Pv(q) >
for all g = ¢~ 1(p)
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First Fundamental Form of a Regular Surface

Isometric maps

A differentiable ¢ : My — Mj is isometric if D¢(p) : T, My — T () Mo preserves the
first fundamental form:

Ly(p) (Do(p)v, Dé(p)w) = I, (v, w)

® Euclidean transformations are isometric

® [ocal parametrisation is isometric
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Gaussian Map

Gaussian Map

® Let M be a regular surface. A differentiable map N : M — S? is said to be a
Gauss map for M if N(p) L T,M, for each p e M

® )M is said to be orientable if such a Gauss map exists. A surface M equipped
with a Gauss map is said to be oriented

® Equivalently, M is orientable if it has an atlas with only changes of charts which
are orientation-preserving (det > 0)

® let v: 1 — M be a curve parametrised by arc-length with v(0) = p. If
v"(0) = 5 (0) + ~2/(0) with 74 (0) € T,M and ~//(0) L T,M. Then

7, (0) = — (7/(0), DN (p)~'(0)) N(p)
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Second Fundamental Form

Shape Operator
Let M by an oriented regular surface having Gaussian map V.
® we can identify T,M = Tiy(,)S

® The shape operator S, : T, M — T,M is the linear map given by
Sp(v) = —=DN(p)(v), for all v € T, M.

® The shape operator is symmetric:



http://www.mia.uni-saarland.de

Second Fundamental Form

Second Fundamental Form

Let M by an oriented regular surface having Gaussian map V.

® The second fundamental form of M at p, S, : T, M x T,,M — R is given by
I, (v,w) = (Sp(v),w), v,wel,M

¢ 11, is a symmetric bilinear map
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